ContextModule: Improving Code Completion via Repository-level Contextual Information

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 11, 2024), p. n/a
Autor principal: Guan, Zhanming
Otros Autores: Liu, Junlin, Liu, Jierui, Chao, Peng, Liu, Dexin, Sun, Ningyuan, Jiang, Bo, Li, Wenchao, Liu, Jie, Zhu, Hang
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3143451274
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3143451274 
045 0 |b d20241211 
100 1 |a Guan, Zhanming 
245 1 |a ContextModule: Improving Code Completion via Repository-level Contextual Information 
260 |b Cornell University Library, arXiv.org  |c Dec 11, 2024 
513 |a Working Paper 
520 3 |a Large Language Models (LLMs) have demonstrated impressive capabilities in code completion tasks, where they assist developers by predicting and generating new code in real-time. However, existing LLM-based code completion systems primarily rely on the immediate context of the file being edited, often missing valuable repository-level information, user behaviour and edit history that could improve suggestion accuracy. Additionally, challenges such as efficiently retrieving relevant code snippets from large repositories, incorporating user behavior, and balancing accuracy with low-latency requirements in production environments remain unresolved. In this paper, we propose ContextModule, a framework designed to enhance LLM-based code completion by retrieving and integrating three types of contextual information from the repository: user behavior-based code, similar code snippets, and critical symbol definitions. By capturing user interactions across files and leveraging repository-wide static analysis, ContextModule improves the relevance and precision of generated code. We implement performance optimizations, such as index caching, to ensure the system meets the latency constraints of real-world coding environments. Experimental results and industrial practise demonstrate that ContextModule significantly improves code completion accuracy and user acceptance rates. 
653 |a Accuracy 
653 |a Repositories 
653 |a User behavior 
653 |a Static code analysis 
653 |a Large language models 
653 |a Real time 
653 |a Information retrieval 
700 1 |a Liu, Junlin 
700 1 |a Liu, Jierui 
700 1 |a Chao, Peng 
700 1 |a Liu, Dexin 
700 1 |a Sun, Ningyuan 
700 1 |a Jiang, Bo 
700 1 |a Li, Wenchao 
700 1 |a Liu, Jie 
700 1 |a Zhu, Hang 
773 0 |t arXiv.org  |g (Dec 11, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143451274/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.08063