Diffusion-Based Attention Warping for Consistent 3D Scene Editing

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (Dec 10, 2024), p. n/a
1. Verfasser: Gomel, Eyal
Weitere Verfasser: Wolf, Lior
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!
Beschreibung
Abstract:We present a novel method for 3D scene editing using diffusion models, designed to ensure view consistency and realism across perspectives. Our approach leverages attention features extracted from a single reference image to define the intended edits. These features are warped across multiple views by aligning them with scene geometry derived from Gaussian splatting depth estimates. Injecting these warped features into other viewpoints enables coherent propagation of edits, achieving high fidelity and spatial alignment in 3D space. Extensive evaluations demonstrate the effectiveness of our method in generating versatile edits of 3D scenes, significantly advancing the capabilities of scene manipulation compared to the existing methods. Project page: \url{https://attention-warp.github.io}
ISSN:2331-8422
Quelle:Engineering Database