Grasping by parallel shape matching
Na minha lista:
| Publicado no: | arXiv.org (Dec 11, 2024), p. n/a |
|---|---|
| Autor principal: | |
| Outros Autores: | , , |
| Publicado em: |
Cornell University Library, arXiv.org
|
| Assuntos: | |
| Acesso em linha: | Citation/Abstract Full text outside of ProQuest |
| Tags: |
Sem tags, seja o primeiro a adicionar uma tag!
|
| Resumo: | Grasping is essential in robotic manipulation, yet challenging due to object and gripper diversity and real-world complexities. Traditional analytic approaches often have long optimization times, while data-driven methods struggle with unseen objects. This paper formulates the problem as a rigid shape matching between gripper and object, which optimizes with Annealed Stein Iterative Closest Point (AS-ICP) and leverages GPU-based parallelization. By incorporating the gripper's tool center point and the object's center of mass into the cost function and using a signed distance field of the gripper for collision checking, our method achieves robust grasps with low computational time. Experiments with the Kinova KG3 gripper show an 87.3% success rate and 0.926 s computation time across various objects and settings, highlighting its potential for real-world applications. |
|---|---|
| ISSN: | 2331-8422 |
| Fonte: | Engineering Database |