A Review of Intelligent Device Fault Diagnosis Technologies Based on Machine Vision

Збережено в:
Бібліографічні деталі
Опубліковано в::arXiv.org (Dec 11, 2024), p. n/a
Автор: Liu, Guiran
Інші автори: Zhu, Binrong
Опубліковано:
Cornell University Library, arXiv.org
Предмети:
Онлайн доступ:Citation/Abstract
Full text outside of ProQuest
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3143451719
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3143451719 
045 0 |b d20241211 
100 1 |a Liu, Guiran 
245 1 |a A Review of Intelligent Device Fault Diagnosis Technologies Based on Machine Vision 
260 |b Cornell University Library, arXiv.org  |c Dec 11, 2024 
513 |a Working Paper 
520 3 |a This paper provides a comprehensive review of mechanical equipment fault diagnosis methods, focusing on the advancements brought by Transformer-based models. It details the structure, working principles, and benefits of Transformers, particularly their self-attention mechanism and parallel computation capabilities, which have propelled their widespread application in natural language processing and computer vision. The discussion highlights key Transformer model variants, such as Vision Transformers (ViT) and their extensions, which leverage self-attention to improve accuracy and efficiency in visual tasks. Furthermore, the paper examines the application of Transformer-based approaches in intelligent fault diagnosis for mechanical systems, showcasing their superior ability to extract and recognize patterns from complex sensor data for precise fault identification. Despite these advancements, challenges remain, including the reliance on extensive labeled datasets, significant computational demands, and difficulties in deploying models on resource-limited devices. To address these limitations, the paper proposes future research directions, such as developing lightweight Transformer architectures, integrating multimodal data sources, and enhancing adaptability to diverse operational conditions. These efforts aim to further expand the application of Transformer-based methods in mechanical fault diagnosis, making them more robust, efficient, and suitable for real-world industrial environments. 
653 |a Visual tasks 
653 |a Parallel processing 
653 |a Attention 
653 |a Computer vision 
653 |a Fault diagnosis 
653 |a Machine vision 
653 |a Mechanical systems 
653 |a Natural language processing 
653 |a Pattern recognition 
653 |a Task complexity 
700 1 |a Zhu, Binrong 
773 0 |t arXiv.org  |g (Dec 11, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143451719/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.08148