Real-Time Trajectory Generation for Soft Robot Manipulators Using Differential Flatness

Spremljeno u:
Bibliografski detalji
Izdano u:arXiv.org (Dec 11, 2024), p. n/a
Glavni autor: Dickson, Akua
Daljnji autori: Pacheco Garcia, Juan C, Ran Jing, Anderson, Meredith L, Sabelhaus, Andrew P
Izdano:
Cornell University Library, arXiv.org
Teme:
Online pristup:Citation/Abstract
Full text outside of ProQuest
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3143451736
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3143451736 
045 0 |b d20241211 
100 1 |a Dickson, Akua 
245 1 |a Real-Time Trajectory Generation for Soft Robot Manipulators Using Differential Flatness 
260 |b Cornell University Library, arXiv.org  |c Dec 11, 2024 
513 |a Working Paper 
520 3 |a Soft robots have the potential to interact with sensitive environments and perform complex tasks effectively. However, motion plans and trajectories for soft manipulators are challenging to calculate due to their deformable nature and nonlinear dynamics. This article introduces a fast real-time trajectory generation approach for soft robot manipulators, which creates dynamically-feasible motions for arbitrary kinematically-feasible paths of the robot's end effector. Our insight is that piecewise constant curvature (PCC) dynamics models of soft robots can be differentially flat, therefore control inputs can be calculated algebraically rather than through a nonlinear differential equation. We prove this flatness under certain conditions, with the curvatures of the robot as the flat outputs. Our two-step trajectory generation approach uses an inverse kinematics procedure to calculate a motion plan of robot curvatures per end-effector position, then, our flatness diffeomorphism generates corresponding control inputs that respect velocity. We validate our approach through simulations of our representative soft robot manipulator along three different trajectories, demonstrating a margin of 23x faster than real-time at a frequency of 100 Hz. This approach could allow fast verifiable replanning of soft robots' motions in safety-critical physical environments, crucial for deployment in the real world. 
653 |a Formability 
653 |a Nonlinear differential equations 
653 |a End effectors 
653 |a Robot dynamics 
653 |a Robot arms 
653 |a Soft robotics 
653 |a Inverse kinematics 
653 |a Task complexity 
653 |a Manipulators 
653 |a Robots 
653 |a Isomorphism 
653 |a Deformation effects 
653 |a Flatness 
653 |a Nonlinear control 
653 |a Real time 
653 |a Nonlinear dynamics 
653 |a Trajectory planning 
653 |a Safety critical 
653 |a Robot control 
700 1 |a Pacheco Garcia, Juan C 
700 1 |a Ran Jing 
700 1 |a Anderson, Meredith L 
700 1 |a Sabelhaus, Andrew P 
773 0 |t arXiv.org  |g (Dec 11, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143451736/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.08568