Predicting Chaotic Systems with Quantum Echo-state Networks

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:arXiv.org (Dec 10, 2024), p. n/a
Tác giả chính: Connerty, Erik
Tác giả khác: Evans, Ethan, Angelatos, Gerasimos, Narayanan, Vignesh
Được phát hành:
Cornell University Library, arXiv.org
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full text outside of ProQuest
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3143451869
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3143451869 
045 0 |b d20241210 
100 1 |a Connerty, Erik 
245 1 |a Predicting Chaotic Systems with Quantum Echo-state Networks 
260 |b Cornell University Library, arXiv.org  |c Dec 10, 2024 
513 |a Working Paper 
520 3 |a Recent advancements in artificial neural networks have enabled impressive tasks on classical computers, but they demand significant computational resources. While quantum computing offers potential beyond classical systems, the advantages of quantum neural networks (QNNs) remain largely unexplored. In this work, we present and examine a quantum circuit (QC) that implements and aims to improve upon the classical echo-state network (ESN), a type of reservoir-based recurrent neural networks (RNNs), using quantum computers. Typically, ESNs consist of an extremely large reservoir that learns high-dimensional embeddings, enabling prediction of complex system trajectories. Quantum echo-state networks (QESNs) aim to reduce this need for prohibitively large reservoirs by leveraging the unique capabilities of quantum computers, potentially allowing for more efficient and higher performing time-series prediction algorithms. The proposed QESN can be implemented on any digital quantum computer implementing a universal gate set, and does not require any sort of stopping or re-initialization of the circuit, allowing continuous evolution of the quantum state over long time horizons. We conducted simulated QC experiments on the chaotic Lorenz system, both with noisy and noiseless models, to demonstrate the circuit's performance and its potential for execution on noisy intermediate-scale quantum (NISQ) computers. 
653 |a Recurrent neural networks 
653 |a Quantum computing 
653 |a Complex systems 
653 |a Algorithms 
653 |a Computers 
653 |a Reservoirs 
653 |a Lorenz system 
653 |a Quantum computers 
653 |a Digital computers 
653 |a Chaos theory 
653 |a Artificial neural networks 
653 |a Neural networks 
700 1 |a Evans, Ethan 
700 1 |a Angelatos, Gerasimos 
700 1 |a Narayanan, Vignesh 
773 0 |t arXiv.org  |g (Dec 10, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143451869/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.07910