Performance Evaluation of IoT-Based Industrial Automation Using Edge, Fog, and Cloud Architectures

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Journal of Network and Systems Management vol. 33, no. 1 (Jan 2025), p. 15
Baskı/Yayın Bilgisi:
Springer Nature B.V.
Konular:
Online Erişim:Citation/Abstract
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3143470426
003 UK-CbPIL
022 |a 1064-7570 
022 |a 1573-7705 
024 7 |a 10.1007/s10922-024-09893-x  |2 doi 
035 |a 3143470426 
045 2 |b d20250101  |b d20250131 
084 |a 53477  |2 nlm 
245 1 |a Performance Evaluation of IoT-Based Industrial Automation Using Edge, Fog, and Cloud Architectures 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a The integration of Internet of Things (IoT) technology into industrial settings has significantly transformed various sectors by automating processes and enhancing decision support systems, thereby boosting productivity and efficiency in agricultural production. This study proposes a Stochastic Petri Net (SPN) model to assess the performance of smart agricultural industrial facilities that integrate Edge, Fog, and Cloud Computing technologies. These technologies utilize sensors to monitor critical operational parameters such as temperature, humidity, and equipment status, enabling efficient data collection, processing, and analysis for informed decision-making and improved operational efficiency. Key challenges include managing large data volumes and ensuring timely data transfer between computing layers, impacting real-time poultry monitoring. The SPN model evaluates key performance metrics, including response time, resource utilization, discard probability, and throughput, while optimizing parameters to enhance system performance and further the application of IoT in industrial automation. 
653 |a Data transfer (computers) 
653 |a Petri nets 
653 |a Humidity 
653 |a Design of experiments 
653 |a Internet of Things 
653 |a Performance evaluation 
653 |a Productivity 
653 |a Data processing 
653 |a Data analysis 
653 |a Automation 
653 |a Manufacturing 
653 |a Fog 
653 |a Data collection 
653 |a Efficiency 
653 |a Business metrics 
653 |a Decision support systems 
653 |a Performance measurement 
653 |a Edge computing 
653 |a Sensitivity analysis 
653 |a Cloud computing 
653 |a Decision making 
653 |a Sensors 
653 |a Resource utilization 
653 |a Real time 
653 |a Industry 4.0 
653 |a Parameters 
653 |a Agrarian structures 
653 |a Equipment 
653 |a Agricultural production 
653 |a Poultry 
653 |a Agricultural research 
653 |a Support networks 
653 |a Industrial automation 
653 |a Reaction time 
653 |a Agricultural technology 
653 |a Animal husbandry 
653 |a Internet 
653 |a Industrial districts 
653 |a Agriculture 
773 0 |t Journal of Network and Systems Management  |g vol. 33, no. 1 (Jan 2025), p. 15 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143470426/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3143470426/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch