Integrative Omics reveals genetic basis and TaMYB7-A1's function in wheat WUE and drought resilience

Guardado en:
Detalles Bibliográficos
Publicado en:bioRxiv (Dec 13, 2024)
Autor principal: Xiao, Jun
Otros Autores: Zhou, Yuxin, Wang, Hao, Qiao, Yunzhou, Zhao, Peng, Cao, Yuan, Liu, Xuemei, Yang, Yiman, Lin, Xuelei, Xu, Shengbao, Dong, Baodi, Wang, Dongzhi
Publicado:
Cold Spring Harbor Laboratory Press
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3144192107
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2024.12.12.628287  |2 doi 
035 |a 3144192107 
045 0 |b d20241213 
100 1 |a Xiao, Jun 
245 1 |a Integrative Omics reveals genetic basis and TaMYB7-A1's function in wheat WUE and drought resilience 
260 |b Cold Spring Harbor Laboratory Press  |c Dec 13, 2024 
513 |a Working Paper 
520 3 |a Improving water use efficiency (WUE) and drought resistance in wheat is critical for ensuring global food security under changing climate conditions. Here, we integrated multi-omic data, including population-scale phenotyping, transcriptomics, and genomics, to dissect the genetic and molecular mechanisms underlying WUE and drought resilience in wheat. Genome-wide association studies (GWAS) revealed 8,135 SNPs associated with WUE-related traits, identifying 258 conditional and non-conditional QTLs, many of which co-localized with known drought-resistance genes. Pan-transcriptome analysis uncovered tissue-specific expression patterns, core and unique gene functions, and dynamic sub-genomic biases in response to drought. eQTL mapping pinpointed 146,966 regulatory loci, including condition-specific hotspots enriched for genes involved in water regulation, osmoregulation, and photosynthesis. Integration of Weighted gene co-expression network analysis (WGCNA), Summary-data-based Mendelian Randomization (SMR) and GWAS, eQTLs identified 207 candidate causal genes as key regulators for WUE-related traits in wheat, such as TaMYB7-A1. Functional analyses found that TaMYB7-A1 enhances drought tolerance by promoting root growth, reducing oxidative stress, and improving osmotic regulation, enabling better water access and survival under stress. It also increases photosynthesis efficiency and WUE, boosting yield under drought without compromising performance in well-watered conditions, making it ideal target for breeding. Our findings provide a comprehensive omic framework for understanding the genetic architecture of WUE and drought resistance, offering valuable targets for breeding resilient wheat varieties.Competing Interest StatementThe authors have declared no competing interest. 
653 |a Transcriptomes 
653 |a Drought resistance 
653 |a Genome-wide association studies 
653 |a Drought 
653 |a Quantitative trait loci 
653 |a Plant breeding 
653 |a Phenotyping 
653 |a Oxidative stress 
653 |a Gene regulation 
653 |a Gene mapping 
653 |a Wheat 
653 |a Molecular modelling 
653 |a Single-nucleotide polymorphism 
653 |a Transcriptomics 
653 |a Photosynthesis 
653 |a Genomics 
653 |a Genes 
653 |a Osmoregulation 
653 |a Food security 
653 |a Water use 
700 1 |a Zhou, Yuxin 
700 1 |a Wang, Hao 
700 1 |a Qiao, Yunzhou 
700 1 |a Zhao, Peng 
700 1 |a Cao, Yuan 
700 1 |a Liu, Xuemei 
700 1 |a Yang, Yiman 
700 1 |a Lin, Xuelei 
700 1 |a Xu, Shengbao 
700 1 |a Dong, Baodi 
700 1 |a Wang, Dongzhi 
773 0 |t bioRxiv  |g (Dec 13, 2024) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3144192107/abstract/embedded/ITVB7CEANHELVZIZ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2024.12.12.628287v1