Optimizing CDN Architectures: Multi-Metric Algorithmic Breakthroughs for Edge and Distributed Performance

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Dec 12, 2024), p. n/a
Hlavní autor: Md Nurul Absur
Další autoři: Saha, Sourya, Nova, Sifat Nawrin, Kazi Fahim Ahmad Nasif, Md Rahat Ul Nasib
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3144197703
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3144197703 
045 0 |b d20241212 
100 1 |a Md Nurul Absur 
245 1 |a Optimizing CDN Architectures: Multi-Metric Algorithmic Breakthroughs for Edge and Distributed Performance 
260 |b Cornell University Library, arXiv.org  |c Dec 12, 2024 
513 |a Working Paper 
520 3 |a A Content Delivery Network (CDN) is a powerful system of distributed caching servers that aims to accelerate content delivery, like high-definition video, IoT applications, and ultra-low-latency services, efficiently and with fast velocity. This has become of paramount importance in the post-pandemic era. Challenges arise when exponential content volume growth and scalability across different geographic locations are required. This paper investigates data-driven evaluations of CDN algorithms in dynamic server selection for latency reduction, bandwidth throttling for efficient resource management, real-time Round Trip Time analysis for adaptive routing, and programmatic network delay simulation to emulate various conditions. Key performance metrics, such as round-trip time (RTT) and CPU usage, are carefully analyzed to evaluate scalability and algorithmic efficiency through two experimental setups: a constrained edge-like local system and a scalable FABRIC testbed. The statistical validation of RTT trends, alongside CPU utilization, is presented in the results. The optimization process reveals significant trade-offs between scalability and resource consumption, providing actionable insights for effectively deploying and enhancing CDN algorithms in edge and distributed computing environments. 
653 |a Central processing units--CPUs 
653 |a Algorithms 
653 |a Performance measurement 
653 |a Throttling 
653 |a Content delivery networks 
653 |a Resource management 
653 |a Real time 
653 |a Geographical locations 
653 |a Distributed processing 
653 |a Optimization 
653 |a High definition 
653 |a Network latency 
700 1 |a Saha, Sourya 
700 1 |a Nova, Sifat Nawrin 
700 1 |a Kazi Fahim Ahmad Nasif 
700 1 |a Md Rahat Ul Nasib 
773 0 |t arXiv.org  |g (Dec 12, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3144197703/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.09474