Front-end Replication Dynamic Window (FRDW) for Online Motor Imagery Classification

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Dec 12, 2024), p. n/a
Hlavní autor: Chen, X
Další autoři: J An, H Wu, S Li, Liu, B, D Wu
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3144197851
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1109/TNSRE.2023.3321640  |2 doi 
035 |a 3144197851 
045 0 |b d20241212 
100 1 |a Chen, X 
245 1 |a Front-end Replication Dynamic Window (FRDW) for Online Motor Imagery Classification 
260 |b Cornell University Library, arXiv.org  |c Dec 12, 2024 
513 |a Working Paper 
520 3 |a Motor imagery (MI) is a classical paradigm in electroencephalogram (EEG) based brain-computer interfaces (BCIs). Online accurate and fast decoding is very important to its successful applications. This paper proposes a simple yet effective front-end replication dynamic window (FRDW) algorithm for this purpose. Dynamic windows enable the classification based on a test EEG trial shorter than those used in training, improving the decision speed; front-end replication fills a short test EEG trial to the length used in training, improving the classification accuracy. Within-subject and cross-subject online MI classification experiments on three public datasets, with three different classifiers and three different data augmentation approaches, demonstrated that FRDW can significantly increase the information transfer rate in MI decoding. Additionally, FR can also be used in training data augmentation. FRDW helped win national champion of the China BCI Competition in 2022. 
653 |a Information transfer 
653 |a Data augmentation 
653 |a Algorithms 
653 |a Replication 
653 |a Electroencephalography 
653 |a Classification 
653 |a Decoding 
653 |a Human-computer interface 
653 |a Imagery 
653 |a Windows (computer programs) 
700 1 |a J An 
700 1 |a H Wu 
700 1 |a S Li 
700 1 |a Liu, B 
700 1 |a D Wu 
773 0 |t arXiv.org  |g (Dec 12, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3144197851/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.09015