RTCUDB: Building Databases with RT Processors

Na minha lista:
Detalhes bibliográficos
Publicado no:arXiv.org (Dec 13, 2024), p. n/a
Autor principal: Shi, Xuri
Outros Autores: Zhang, Kai, Wang, X Sean, Zhang, Xiaodong, Lee, Rubao
Publicado em:
Cornell University Library, arXiv.org
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3144199415
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3144199415 
045 0 |b d20241213 
100 1 |a Shi, Xuri 
245 1 |a RTCUDB: Building Databases with RT Processors 
260 |b Cornell University Library, arXiv.org  |c Dec 13, 2024 
513 |a Working Paper 
520 3 |a A spectrum of new hardware has been studied to accelerate database systems in the past decade. Specifically, CUDA cores are known to benefit from the fast development of GPUs and make notable performance improvements. The state-of-the-art GPU-based implementation, i.e., Crystal, can achieve up to 61 times higher performance than CPU-based implementations. However, experiments show that the approach has already saturated almost all GPU memory bandwidth, which means there is little room left for further performance improvements. We introduce RTCUDB, the first query engine that leverages ray tracing (RT) cores in GPUs to accelerate database query processing. RTCUDB efficiently transforms the evaluation of a query into a ray-tracing job in a three-dimensional space. By dramatically reducing the amount of accessed data and optimizing the data access pattern with the ray tracing mechanism, the performance of RTCUDB is no longer limited by the memory bandwidth as in CUDA-based implementations. Experimental results show that RTCUDB outperforms the state-of-the-art GPU-based query engine by up to 18.3 times while the memory bandwidth usage drops to only 36.7% on average. 
653 |a Ray tracing 
653 |a Computer memory 
653 |a Graphics processing units 
653 |a Queries 
653 |a Databases 
653 |a Bandwidths 
653 |a Query processing 
700 1 |a Zhang, Kai 
700 1 |a Wang, X Sean 
700 1 |a Zhang, Xiaodong 
700 1 |a Lee, Rubao 
773 0 |t arXiv.org  |g (Dec 13, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3144199415/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.09337