Hybrid SEM-ANN model for predicting undergraduates’ e-learning continuance intention based on perceived educational and emotional support

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS One vol. 19, no. 12 (Dec 2024), p. e0308630
Hlavní autor: Xu, Shanshan
Další autoři: Wang, Yangxin, Luo, Wenbo
Vydáno:
Public Library of Science
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3144310256
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0308630  |2 doi 
035 |a 3144310256 
045 2 |b d20241201  |b d20241231 
084 |a 174835  |2 nlm 
100 1 |a Xu, Shanshan 
245 1 |a Hybrid SEM-ANN model for predicting undergraduates’ e-learning continuance intention based on perceived educational and emotional support 
260 |b Public Library of Science  |c Dec 2024 
513 |a Journal Article 
520 3 |a Based on the Expectation Confirmation Model (ECM), this study explores the impact of perceived educational and emotional support on university students’ continuance intention to engage in e-learning. Researchers conducted a survey using structured questionnaires among 368 university students from three universities in Jiangxi Province. They measured their self-reported responses on six constructs: perceived educational support, perceived emotional support, perceived usefulness, confirmation, satisfaction, and continuance intention. The relationships between predictors and continuance intention, characterized by non-compensatory and non-linear dynamics, were analyzed using Structural Equation Modeling combined with Artificial Neural Networks. Apart from the direct effects of perceived educational and emotional support on perceived usefulness being non-significant, all other hypotheses were confirmed. Furthermore, according to the normalized importance derived from the multilayer perceptron analysis, satisfaction was identified as the most critical predictor (100%), followed by confirmation (29.9%), perceived usefulness (28.3%), perceived educational support (22.6%), and perceived emotional support (21.6%). These constructs explained 62.1% of the total variance in the students’ continuance intention to engage in e-learning. This study utilized a two-stage analytical approach, enhancing the depth and accuracy of data processing and expanding the methodological scope of research in educational technology. The findings of this study contribute to the United Nations’ Sustainable Development Goal 4, which aims to ensure inclusive and equitable quality education and promote lifelong learning opportunities for all by 2030. It provides direction for future research in different environmental and cultural contexts. 
653 |a Teaching 
653 |a Lifelong learning 
653 |a College students 
653 |a Artificial neural networks 
653 |a Multilayer perceptrons 
653 |a Neural networks 
653 |a Technology 
653 |a Emotional support 
653 |a Educational technology 
653 |a University students 
653 |a Influence 
653 |a Distance learning 
653 |a Teachers 
653 |a Colleges & universities 
653 |a Emotions 
653 |a Data processing 
653 |a Social support 
653 |a Social networks 
653 |a Hypotheses 
653 |a Online instruction 
653 |a Sustainable development 
653 |a Technology Acceptance Model 
653 |a Self-efficacy 
653 |a Learning 
653 |a Satisfaction 
653 |a Higher education 
653 |a Success 
653 |a School environment 
653 |a Structural equation modeling 
653 |a Quality of education 
653 |a Feedback 
653 |a Students 
653 |a Computer assisted instruction--CAI 
653 |a Educational research 
653 |a Classrooms 
653 |a Technology assessment 
653 |a Social interaction 
653 |a Dynamic structural analysis 
653 |a Information systems 
653 |a Literature reviews 
653 |a Nonlinear dynamics 
653 |a Usefulness 
653 |a Cultural factors 
653 |a Undergraduate students 
653 |a Internet 
653 |a Cultural differences 
653 |a Social 
700 1 |a Wang, Yangxin 
700 1 |a Luo, Wenbo 
773 0 |t PLoS One  |g vol. 19, no. 12 (Dec 2024), p. e0308630 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3144310256/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3144310256/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3144310256/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch