Automating Candidate Gene Prioritization with Large Language Models: Development and Benchmarking of an API-Driven Workflow Leveraging GPT-4

Sparad:
Bibliografiska uppgifter
I publikationen:bioRxiv (Dec 16, 2024)
Huvudupphov: Khan, Taushif
Övriga upphov: Toufiq, Mohammed, Yurieva, Marina, Indrawattana, Nitaya, Jittmittraphap, Akanitt, Kosoltanapiwat, Nathamon, Pumirat, Pornpan, Sukphopetch, Passanesh, Vanaporn, Muthita, Kaber, Basirudeen, Palucka, Karolina, Rinchai, Darawan, Chaussabel, Damien
Utgiven:
Cold Spring Harbor Laboratory Press
Ämnen:
Länkar:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3145269254
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2024.12.10.627808  |2 doi 
035 |a 3145269254 
045 0 |b d20241216 
100 1 |a Khan, Taushif 
245 1 |a Automating Candidate Gene Prioritization with Large Language Models: Development and Benchmarking of an API-Driven Workflow Leveraging GPT-4 
260 |b Cold Spring Harbor Laboratory Press  |c Dec 16, 2024 
513 |a Working Paper 
520 3 |a In this exploratory study, we developed an automated workflow that leverages Large Language Models, specifically GPT-4, to prioritize candidate genes for targeted assay development. The workflow automates interaction with OpenAI models and enables prompt creation, submission. It features customizable prompts designed to evaluate candidate genes based on criteria such as association with biological processes, biomarker potential, and therapeutic implications, which can be tailored for specific diseases or processes. Benchmarking experiments comparing the performance of the Application Programming Interface (API)-based automated prompting approach with manual prompting demonstrated high consistency and reproducibility in gene prioritization results. The automated method exhibited scalability by successfully prioritizing genes relevant to sepsis from the BloodGen3 repertoire, comprising 11,465 genes, distributed among 382 modules. The workflow efficiently identified sepsis-associated genes across the repertoire, revealing distinct gene clusters and providing insights into their distribution within module aggregates and individual modules. This proof-of-concept study demonstrates how LLMs can enhance gene prioritization, streamlining the identification process for targeted assays across various biological contexts. However, it also reveals the need for further validation and highlights the exploratory nature of this work due to scoring inconsistencies and the necessity for manual fact-checking. Despite these challenges, the automated workflow holds promise for accelerating targeted assay development for disease management and paves the way for future research.Competing Interest StatementThe authors have declared no competing interest. 
653 |a Sepsis 
653 |a Application programming interface 
653 |a Models 
653 |a Automation 
653 |a Genes 
653 |a Large language models 
653 |a Gene clusters 
700 1 |a Toufiq, Mohammed 
700 1 |a Yurieva, Marina 
700 1 |a Indrawattana, Nitaya 
700 1 |a Jittmittraphap, Akanitt 
700 1 |a Kosoltanapiwat, Nathamon 
700 1 |a Pumirat, Pornpan 
700 1 |a Sukphopetch, Passanesh 
700 1 |a Vanaporn, Muthita 
700 1 |a Kaber, Basirudeen 
700 1 |a Palucka, Karolina 
700 1 |a Rinchai, Darawan 
700 1 |a Chaussabel, Damien 
773 0 |t bioRxiv  |g (Dec 16, 2024) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3145269254/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3145269254/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2024.12.10.627808v1