Toward Foundation Model for Multivariate Wearable Sensing of Physiological Signals

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:arXiv.org (Dec 12, 2024), p. n/a
Príomhchruthaitheoir: Luo, Yunfei
Rannpháirtithe: Chen, Yuliang, Salekin, Asif, Rahman, Tauhidur
Foilsithe / Cruthaithe:
Cornell University Library, arXiv.org
Ábhair:
Rochtain ar líne:Citation/Abstract
Full text outside of ProQuest
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 3145272419
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3145272419 
045 0 |b d20241212 
100 1 |a Luo, Yunfei 
245 1 |a Toward Foundation Model for Multivariate Wearable Sensing of Physiological Signals 
260 |b Cornell University Library, arXiv.org  |c Dec 12, 2024 
513 |a Working Paper 
520 3 |a Time-series foundation models have the ability to run inference, mainly forecasting, on any type of time series data, thanks to the informative representations comprising waveform features. Wearable sensing data, on the other hand, contain more variability in both patterns and frequency bands of interest and generally emphasize more on the ability to infer healthcare-related outcomes. The main challenge of crafting a foundation model for wearable sensing physiological signals is to learn generalizable representations that support efficient adaptation across heterogeneous sensing configurations and applications. In this work, we propose NormWear, a step toward such a foundation model, aiming to extract generalized and informative wearable sensing representations. NormWear has been pretrained on a large set of physiological signals, including PPG, ECG, EEG, GSR, and IMU, from various public resources. For a holistic assessment, we perform downstream evaluation on 11 public wearable sensing datasets, spanning 18 applications in the areas of mental health, body state inference, biomarker estimations, and disease risk evaluations. We demonstrate that NormWear achieves a better performance improvement over competitive baselines in general time series foundation modeling. In addition, leveraging a novel representation-alignment-match-based method, we align physiological signals embeddings with text embeddings. This alignment enables our proposed foundation model to perform zero-shot inference, allowing it to generalize to previously unseen wearable signal-based health applications. Finally, we perform nonlinear dynamic analysis on the waveform features extracted by the model at each intermediate layer. This analysis quantifies the model's internal processes, offering clear insights into its behavior and fostering greater trust in its inferences among end users. 
653 |a Physiology 
653 |a Feature extraction 
653 |a Alignment 
653 |a Waveforms 
653 |a Performance evaluation 
653 |a End users 
653 |a Multivariate analysis 
653 |a Inference 
653 |a Wearable technology 
653 |a Frequencies 
653 |a Biomarkers 
653 |a Time series 
653 |a Nonlinear dynamics 
653 |a Representations 
700 1 |a Chen, Yuliang 
700 1 |a Salekin, Asif 
700 1 |a Rahman, Tauhidur 
773 0 |t arXiv.org  |g (Dec 12, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3145272419/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.09758