A Library for Learning Neural Operators

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:arXiv.org (Dec 17, 2024), p. n/a
Kaituhi matua: Kossaifi, Jean
Ētahi atu kaituhi: Kovachki, Nikola, Li, Zongyi, Pitt, David, Liu-Schiaffini, Miguel, George, Robert Joseph, Bonev, Boris, Azizzadenesheli, Kamyar, Berner, Julius, Anandkumar, Anima
I whakaputaina:
Cornell University Library, arXiv.org
Ngā marau:
Urunga tuihono:Citation/Abstract
Full text outside of ProQuest
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3145272953
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3145272953 
045 0 |b d20241217 
100 1 |a Kossaifi, Jean 
245 1 |a A Library for Learning Neural Operators 
260 |b Cornell University Library, arXiv.org  |c Dec 17, 2024 
513 |a Working Paper 
520 3 |a We present NeuralOperator, an open-source Python library for operator learning. Neural operators generalize neural networks to maps between function spaces instead of finite-dimensional Euclidean spaces. They can be trained and inferenced on input and output functions given at various discretizations, satisfying a discretization convergence properties. Built on top of PyTorch, NeuralOperator provides all the tools for training and deploying neural operator models, as well as developing new ones, in a high-quality, tested, open-source package. It combines cutting-edge models and customizability with a gentle learning curve and simple user interface for newcomers. 
653 |a Learning curves 
653 |a Python 
653 |a Function space 
653 |a Convergence 
653 |a Neural networks 
653 |a Operators (mathematics) 
653 |a Discretization 
653 |a Open source software 
653 |a Euclidean geometry 
700 1 |a Kovachki, Nikola 
700 1 |a Li, Zongyi 
700 1 |a Pitt, David 
700 1 |a Liu-Schiaffini, Miguel 
700 1 |a George, Robert Joseph 
700 1 |a Bonev, Boris 
700 1 |a Azizzadenesheli, Kamyar 
700 1 |a Berner, Julius 
700 1 |a Anandkumar, Anima 
773 0 |t arXiv.org  |g (Dec 17, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3145272953/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.10354