Machine Learning Driven Smishing Detection Framework for Mobile Security

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:arXiv.org (Dec 9, 2024), p. n/a
मुख्य लेखक: Goel, Diksha
अन्य लेखक: Hussain, Ahmad, Jain, Ankit Kumar, Goel, Nikhil Kumar
प्रकाशित:
Cornell University Library, arXiv.org
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full text outside of ProQuest
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3145273116
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3145273116 
045 0 |b d20241209 
100 1 |a Goel, Diksha 
245 1 |a Machine Learning Driven Smishing Detection Framework for Mobile Security 
260 |b Cornell University Library, arXiv.org  |c Dec 9, 2024 
513 |a Working Paper 
520 3 |a The increasing reliance on smartphones for communication, financial transactions, and personal data management has made them prime targets for cyberattacks, particularly smishing, a sophisticated variant of phishing conducted via SMS. Despite the growing threat, traditional detection methods often struggle with the informal and evolving nature of SMS language, which includes abbreviations, slang, and short forms. This paper presents an enhanced content-based smishing detection framework that leverages advanced text normalization techniques to improve detection accuracy. By converting nonstandard text into its standardized form, the proposed model enhances the efficacy of machine learning classifiers, particularly the Naive Bayesian classifier, in distinguishing smishing messages from legitimate ones. Our experimental results, validated on a publicly available dataset, demonstrate a detection accuracy of 96.2%, with a low False Positive Rate of 3.87% and False Negative Rate of 2.85%. This approach significantly outperforms existing methodologies, providing a robust solution to the increasingly sophisticated threat of smishing in the mobile environment. 
653 |a Machine learning 
653 |a Transaction processing 
653 |a Smartphones 
653 |a Abbreviations 
653 |a Short message service 
653 |a Phishing 
653 |a Target detection 
700 1 |a Hussain, Ahmad 
700 1 |a Jain, Ankit Kumar 
700 1 |a Goel, Nikhil Kumar 
773 0 |t arXiv.org  |g (Dec 9, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3145273116/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.09641