Nonreciprocal spin-wave dispersion in magnetic bilayers

保存先:
書誌詳細
出版年:arXiv.org (Dec 12, 2024), p. n/a
第一著者: Heins, C
その他の著者: Iurchuk, V, Gladii, O, Körber, L, Kákay, A, Fassbender, J, Schultheiss, K, Schultheiss, H
出版事項:
Cornell University Library, arXiv.org
主題:
オンライン・アクセス:Citation/Abstract
Full text outside of ProQuest
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
抄録:Nonreciprocal spin-wave propagation in bilayer ferromagnetic systems has attracted significant attention due to its potential to precisely quantify material parameters as well as for applications in magnonic logic and information processing. In this study we investigate the nonreciprocity of spin-wave dispersions in heterostructures consisting of two distinct ferromagnetic materials, focusing on the influence of saturation magnetization and thickness of the magnetic layers. We exploit Brillouin light scattering to confirm numerical calculations which are conducted with the finite element software TETRAX. An extensive numerical analysis reveals that the nonreciprocal behavior is strongly influenced by the changing material parameters, with asymmetry in the spin-wave propagation direction reaching several GHz under optimized conditions. Our findings demonstrate that tailoring the bilayer composition enables precise control over nonreciprocity, providing a pathway for engineering efficient unidirectional spin-wave devices. These results offer a deeper understanding of hybrid ferromagnetic systems and open avenues for designing advanced magnonic circuits.
ISSN:2331-8422
ソース:Engineering Database