Separating Prediction and Explanation: An Approach Based on Explainable Artificial Intelligence for Analyzing Network Intrusion

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Network and Systems Management vol. 33, no. 1 (Jan 2025), p. 16
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3145281587
003 UK-CbPIL
022 |a 1064-7570 
022 |a 1573-7705 
024 7 |a 10.1007/s10922-024-09891-z  |2 doi 
035 |a 3145281587 
045 2 |b d20250101  |b d20250131 
084 |a 53477  |2 nlm 
245 1 |a Separating Prediction and Explanation: An Approach Based on Explainable Artificial Intelligence for Analyzing Network Intrusion 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Intrusion detection maintains the normal activity of the network system by identifying abnormal connections, while intrusion analysis further identifies specific types of abnormality. The current intrusion detection systems (IDSs) have connected intrusion detection, intrusion analysis, and intrusion processing in series so that the system can address network intrusion behaviors of attackers promptly. Most IDSs are constructed with complex models to achieve high-precision intrusion detection and intrusion analysis tasks. The generation of Explainable Artificial Intelligence (XAI) helps to aid in understanding the decision logic of the prediction of IDS for unknown data. It also helps to establish a plausible criterion for further categorized predictions of the type of abnormal data. With this in mind, this paper proposes an XAI-based approach for analyzing network intrusion by the contribution of features of data to prediction results. The Shapley values are used to represent these contributions and are derived from SHapley Additive exPlanations (SHAP). Specific classification criterion is extracted from these contributions for analyzing unknown types of abnormal data. We conducted experiments on seven publicly available intrusion detection datasets. The experimental results have shown that the approach can realize the effective analysis of abnormal data while ensuring high-accuracy detection of network intrusion data. At the same time, when compared to autoencoder and decision tree (DT) which both have prediction and explanation, the proposed approach can get a better overall performance in intrusion detection and intrusion analysis tasks. 
653 |a Data analysis 
653 |a Artificial intelligence 
653 |a Network analysis 
653 |a Explainable artificial intelligence 
653 |a Task complexity 
653 |a Decision trees 
653 |a Intrusion detection systems 
653 |a Criteria 
653 |a Analysis 
653 |a Experiments 
653 |a Decision making 
653 |a Classification 
653 |a Data 
653 |a Predictions 
653 |a Intrusion 
653 |a Task performance 
653 |a Networks 
773 0 |t Journal of Network and Systems Management  |g vol. 33, no. 1 (Jan 2025), p. 16 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3145281587/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3145281587/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch