Comparative Analysis of Mel-Frequency Cepstral Coefficients and Wavelet Based Audio Signal Processing for Emotion Detection and Mental Health Assessment in Spoken Speech

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 12, 2024), p. n/a
Autor principal: Agbo, Idoko
Otros Autores: El-Sayed, Hoda, Kamruzzan Sarker, M D
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3145901130
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3145901130 
045 0 |b d20241212 
100 1 |a Agbo, Idoko 
245 1 |a Comparative Analysis of Mel-Frequency Cepstral Coefficients and Wavelet Based Audio Signal Processing for Emotion Detection and Mental Health Assessment in Spoken Speech 
260 |b Cornell University Library, arXiv.org  |c Dec 12, 2024 
513 |a Working Paper 
520 3 |a The intersection of technology and mental health has spurred innovative approaches to assessing emotional well-being, particularly through computational techniques applied to audio data analysis. This study explores the application of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) models on wavelet extracted features and Mel-frequency Cepstral Coefficients (MFCCs) for emotion detection from spoken speech. Data augmentation techniques, feature extraction, normalization, and model training were conducted to evaluate the models' performance in classifying emotional states. Results indicate that the CNN model achieved a higher accuracy of 61% compared to the LSTM model's accuracy of 56%. Both models demonstrated better performance in predicting specific emotions such as surprise and anger, leveraging distinct audio features like pitch and speed variations. Recommendations include further exploration of advanced data augmentation techniques, combined feature extraction methods, and the integration of linguistic analysis with speech characteristics for improved accuracy in mental health diagnostics. Collaboration for standardized dataset collection and sharing is recommended to foster advancements in affective computing and mental health care interventions. 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Data analysis 
653 |a Data augmentation 
653 |a Emotional factors 
653 |a Mental health 
653 |a Performance evaluation 
653 |a Technology assessment 
653 |a Affective computing 
653 |a Emotion recognition 
653 |a Artificial neural networks 
653 |a Emotions 
653 |a Audio data 
653 |a Wavelet analysis 
653 |a Speech recognition 
700 1 |a El-Sayed, Hoda 
700 1 |a Kamruzzan Sarker, M D 
773 0 |t arXiv.org  |g (Dec 12, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3145901130/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.10469