CrossVIT-augmented Geospatial-Intelligence Visualization System for Tracking Economic Development Dynamics

Salvato in:
Dettagli Bibliografici
Pubblicato in:arXiv.org (Dec 13, 2024), p. n/a
Autore principale: Bai, Yanbing
Altri autori: Su, Jinhua, Qiao, Bin, Ma, Xiaoran
Pubblicazione:
Cornell University Library, arXiv.org
Soggetti:
Accesso online:Citation/Abstract
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3145901394
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3145901394 
045 0 |b d20241213 
100 1 |a Bai, Yanbing 
245 1 |a CrossVIT-augmented Geospatial-Intelligence Visualization System for Tracking Economic Development Dynamics 
260 |b Cornell University Library, arXiv.org  |c Dec 13, 2024 
513 |a Working Paper 
520 3 |a Timely and accurate economic data is crucial for effective policymaking. Current challenges in data timeliness and spatial resolution can be addressed with advancements in multimodal sensing and distributed computing. We introduce Senseconomic, a scalable system for tracking economic dynamics via multimodal imagery and deep learning. Built on the Transformer framework, it integrates remote sensing and street view images using cross-attention, with nighttime light data as weak supervision. The system achieved an R-squared value of 0.8363 in county-level economic predictions and halved processing time to 23 minutes using distributed computing. Its user-friendly design includes a Vue3-based front end with Baidu maps for visualization and a Python-based back end automating tasks like image downloads and preprocessing. Senseconomic empowers policymakers and researchers with efficient tools for resource allocation and economic planning. 
653 |a Spatial data 
653 |a Tracking 
653 |a Spatial resolution 
653 |a Economic development 
653 |a Visualization 
653 |a Distributed processing 
653 |a Resource allocation 
653 |a Remote sensing 
700 1 |a Su, Jinhua 
700 1 |a Qiao, Bin 
700 1 |a Ma, Xiaoran 
773 0 |t arXiv.org  |g (Dec 13, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3145901394/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.10474