Thinking with Knowledge Graphs: Enhancing LLM Reasoning Through Structured Data

保存先:
書誌詳細
出版年:arXiv.org (Dec 14, 2024), p. n/a
第一著者: Wu, Xue
その他の著者: Tsioutsiouliklis, Kostas
出版事項:
Cornell University Library, arXiv.org
主題:
オンライン・アクセス:Citation/Abstract
Full text outside of ProQuest
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
抄録:Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. However, they often struggle with complex reasoning tasks and are prone to hallucination. Recent research has shown promising results in leveraging knowledge graphs (KGs) to enhance LLM performance. KGs provide a structured representation of entities and their relationships, offering a rich source of information that can enhance the reasoning capabilities of LLMs. For this work, we have developed different techniques that tightly integrate KG structures and semantics into LLM representations. Our results show that we are able to significantly improve the performance of LLMs in complex reasoning scenarios, and ground the reasoning process with KGs. We are the first to represent KGs with programming language and fine-tune pretrained LLMs with KGs. This integration facilitates more accurate and interpretable reasoning processes, paving the way for more advanced reasoning capabilities of LLMs.
ISSN:2331-8422
ソース:Engineering Database