Memory-Efficient 4-bit Preconditioned Stochastic Optimization

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 14, 2024), p. n/a
Autor principal: Li, Jingyang
Otros Autores: Ding, Kuangyu, Kim-Chuan Toh, Zhou, Pan
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Preconditioned stochastic optimization algorithms, exemplified by Shampoo, have demonstrated superior performance over first-order optimizers, providing both theoretical advantages in convergence rates and practical improvements in large-scale neural network training. However, they incur substantial memory overhead due to the storage demands of non-diagonal preconditioning matrices. To address this, we introduce 4-bit quantization for Shampoo's preconditioners. We introduced two key methods: First, we apply Cholesky decomposition followed by quantization of the Cholesky factors, reducing memory usage by leveraging their lower triangular structure while preserving symmetry and positive definiteness to minimize information loss. To our knowledge, this is the first quantization approach applied to Cholesky factors of preconditioners. Second, we incorporate error feedback in the quantization process, efficiently storing Cholesky factors and error states in the lower and upper triangular parts of the same matrix. Through extensive experiments, we demonstrate that combining Cholesky quantization with error feedback enhances memory efficiency and algorithm performance in large-scale deep-learning tasks. Theoretically, we also provide convergence proofs for quantized Shampoo under both smooth and non-smooth stochastic optimization settings.
ISSN:2331-8422
Fuente:Engineering Database