DRUM: Diffusion-based runoff model for probabilistic flood forecasting

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 16, 2024), p. n/a
Autor principal: Ou, Zhigang
Altres autors: Congyi Nai, Pan, Baoxiang, Pan, Ming, Shen, Chaopeng, Jiang, Peishi, Liu, Xingcai, Tang, Qiuhong, Li, Wenqing, Zheng, Yi
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3145904455
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3145904455 
045 0 |b d20241216 
100 1 |a Ou, Zhigang 
245 1 |a DRUM: Diffusion-based runoff model for probabilistic flood forecasting 
260 |b Cornell University Library, arXiv.org  |c Dec 16, 2024 
513 |a Working Paper 
520 3 |a Reliable flood forecasting remains a critical challenge due to persistent underestimation of peak flows and inadequate uncertainty quantification in current approaches. We present DRUM (Diffusion-based Runoff Model), a generative AI solution for probabilistic runoff prediction. DRUM builds up an iterative refinement process that generates ensemble runoff estimates from noise, guided by past meteorological conditions, present meteorological forecasts, and static catchment attributes. This framework allows learning complex hydrological behaviors without imposing explicit distributional assumptions, particularly benefiting extreme event prediction and uncertainty quantification. Using data from 531 representative basins across the contiguous United States, DRUM outperforms state-of-the-art deep learning methods in runoff forecasting regarding both deterministic and probabilistic skills, with particular advantages in extreme flow (0.1%) predictions. DRUM demonstrates superior flood early warning skill across all magnitudes and lead times (1-7 days), achieving F1 scores near 0.4 for extreme events under perfect forecasts and maintaining robust performance with operational forecasts, especially for longer lead times and high-magnitude floods. When applied to climate projections through the 21st century, DRUM reveals increasing flood vulnerability in 47.8-57.1% of basins across emission scenarios, with particularly elevated risks along the West Coast and Southeast regions. These advances demonstrate significant potential for improving both operational flood forecasting and long-term risk assessment in a changing climate. 
653 |a Flood forecasting 
653 |a Noise generation 
653 |a Runoff 
653 |a Deep learning 
653 |a Basins 
653 |a Noise prediction 
653 |a Weather forecasting 
653 |a Hydrologic models 
653 |a Uncertainty 
653 |a Generative artificial intelligence 
653 |a Flood predictions 
700 1 |a Congyi Nai 
700 1 |a Pan, Baoxiang 
700 1 |a Pan, Ming 
700 1 |a Shen, Chaopeng 
700 1 |a Jiang, Peishi 
700 1 |a Liu, Xingcai 
700 1 |a Tang, Qiuhong 
700 1 |a Li, Wenqing 
700 1 |a Zheng, Yi 
773 0 |t arXiv.org  |g (Dec 16, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3145904455/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.11942