SE-GCL: An Event-Based Simple and Effective Graph Contrastive Learning for Text Representation

Gardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 16, 2024), p. n/a
Autor Principal: Meng, Tao
Outros autores: Ai, Wei, Li, Jianbin, Wang, Ze, Shou, Yuntao, Li, Keqin
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en liña:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3145910718
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3145910718 
045 0 |b d20241216 
100 1 |a Meng, Tao 
245 1 |a SE-GCL: An Event-Based Simple and Effective Graph Contrastive Learning for Text Representation 
260 |b Cornell University Library, arXiv.org  |c Dec 16, 2024 
513 |a Working Paper 
520 3 |a Text representation learning is significant as the cornerstone of natural language processing. In recent years, graph contrastive learning (GCL) has been widely used in text representation learning due to its ability to represent and capture complex text information in a self-supervised setting. However, current mainstream graph contrastive learning methods often require the incorporation of domain knowledge or cumbersome computations to guide the data augmentation process, which significantly limits the application efficiency and scope of GCL. Additionally, many methods learn text representations only by constructing word-document relationships, which overlooks the rich contextual semantic information in the text. To address these issues and exploit representative textual semantics, we present an event-based, simple, and effective graph contrastive learning (SE-GCL) for text representation. Precisely, we extract event blocks from text and construct internal relation graphs to represent inter-semantic interconnections, which can ensure that the most critical semantic information is preserved. Then, we devise a streamlined, unsupervised graph contrastive learning framework to leverage the complementary nature of the event semantic and structural information for intricate feature data capture. In particular, we introduce the concept of an event skeleton for core representation semantics and simplify the typically complex data augmentation techniques found in existing graph contrastive learning to boost algorithmic efficiency. We employ multiple loss functions to prompt diverse embeddings to converge or diverge within a confined distance in the vector space, ultimately achieving a harmonious equilibrium. We conducted experiments on the proposed SE-GCL on four standard data sets (AG News, 20NG, SougouNews, and THUCNews) to verify its effectiveness in text representation learning. 
653 |a Data augmentation 
653 |a Standard data 
653 |a Semantics 
653 |a Machine learning 
653 |a Graphical representations 
653 |a Natural language processing 
653 |a Knowledge representation 
653 |a Data capture 
653 |a Vector spaces 
653 |a Effectiveness 
700 1 |a Ai, Wei 
700 1 |a Li, Jianbin 
700 1 |a Wang, Ze 
700 1 |a Shou, Yuntao 
700 1 |a Li, Keqin 
773 0 |t arXiv.org  |g (Dec 16, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3145910718/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.11652