Crowd: A Social Network Simulation Framework

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 14, 2024), p. n/a
Autor principal: Ann Nedime Nese Rende
Altres autors: Yilmaz, Tolga, Ulusoy, Özgür
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3145910829
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3145910829 
045 0 |b d20241214 
100 1 |a Ann Nedime Nese Rende 
245 1 |a Crowd: A Social Network Simulation Framework 
260 |b Cornell University Library, arXiv.org  |c Dec 14, 2024 
513 |a Working Paper 
520 3 |a To observe how individual behavior shapes a larger community's actions, agent-based modeling and simulation (ABMS) has been widely adopted by researchers in social sciences, economics, and epidemiology. While simulations can be run on general-purpose ABMS frameworks, these tools are not specifically designed for social networks and, therefore, provide limited features, increasing the effort required for complex simulations. In this paper, we introduce Crowd, a social network simulator that adopts the agent-based modeling methodology to model real-world phenomena within a network environment. Designed to facilitate easy and quick modeling, Crowd supports simulation setup through YAML configuration and enables further customization with user-defined methods. Other features include no-code simulations for diffusion tasks, interactive visualizations, data aggregation, and chart drawing facilities. Designed in Python, Crowd also supports generative agents and connects easily with Python's libraries for data analysis and machine learning. Finally, we include three case studies to illustrate the use of the framework, including generative agents in epidemics, influence maximization, and networked trust games. 
653 |a Data management 
653 |a Data analysis 
653 |a Simulation 
653 |a Python 
653 |a Social networks 
653 |a Machine learning 
653 |a Modelling 
653 |a Agent-based models 
653 |a Task complexity 
700 1 |a Yilmaz, Tolga 
700 1 |a Ulusoy, Özgür 
773 0 |t arXiv.org  |g (Dec 14, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3145910829/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.10781