Integrating an interpolation technique and AI models using Bayesian model averaging to enhance groundwater level monitoring

Guardado en:
Detalles Bibliográficos
Publicado en:Earth Science Informatics vol. 18, no. 1 (Jan 2025), p. 65
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3145946777
003 UK-CbPIL
022 |a 1865-0473 
022 |a 1865-0481 
024 7 |a 10.1007/s12145-024-01533-x  |2 doi 
035 |a 3145946777 
045 2 |b d20250101  |b d20250131 
084 |a 109043  |2 nlm 
245 1 |a Integrating an interpolation technique and AI models using Bayesian model averaging to enhance groundwater level monitoring 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Monitoring groundwater levels in areas experiencing depletion is crucial for effective resource management. This study combines two approaches for estimating groundwater levels in regions lacking sufficient data for better spatial distribution estimates. To achieve this, several Artificial Intelligence (AI) models with different input features were developed using monthly groundwater level data from 2010 to 2023 in the Sacramento Valley, California. The results indicated that the Random Forest (RF) and Gradient Boosting Regressor (GBR) models, with Root Mean Square Error (RMSE) of 7.03 m and 7.83 m in the testing phase, respectively, were the most accurate. Subsequently, the data for each year in 2010–2023 were interpolated using the Ordinary Kriging (OK) method. The outputs of this method and the outputs from RF and GBR models were then merged using Bayesian Model Averaging (BMA). For 2010, 2015, 2020, and 2023, this approach reduced groundwater level estimation errors by 31.18, 41.87, 50.60, and 45.04%, respectively. Additionally, the results showed that the integrating method could reduce groundwater level estimates’ RMSE and Mean Absolute Error (MAE) by an average of 41.12 and 33.72% over 2010–2023. 
653 |a Groundwater levels 
653 |a Spatial distribution 
653 |a Spatial data 
653 |a Bayesian analysis 
653 |a Artificial intelligence 
653 |a Groundwater 
653 |a Interpolation 
653 |a Root-mean-square errors 
653 |a Groundwater depletion 
653 |a Resource management 
653 |a Estimates 
653 |a Error reduction 
653 |a Groundwater data 
653 |a Estimation errors 
653 |a Water monitoring 
653 |a Estimation 
653 |a Environmental 
773 0 |t Earth Science Informatics  |g vol. 18, no. 1 (Jan 2025), p. 65 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3145946777/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3145946777/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch