High-throughput mesoscopic optical imaging data processing and parsing using differential-guided filtered neural networks

Guardado en:
Bibliografiske detaljer
Udgivet i:Brain Informatics vol. 11, no. 1 (Dec 2024), p. 32
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3146644339
003 UK-CbPIL
022 |a 2198-4018 
022 |a 2198-4026 
024 7 |a 10.1186/s40708-024-00246-7  |2 doi 
035 |a 3146644339 
045 2 |b d20241201  |b d20241231 
245 1 |a High-throughput mesoscopic optical imaging data processing and parsing using differential-guided filtered neural networks 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a High-throughput mesoscopic optical imaging technology has tremendously boosted the efficiency of procuring massive mesoscopic datasets from mouse brains. Constrained by the imaging field of view, the image strips obtained by such technologies typically require further processing, such as cross-sectional stitching, artifact removal, and signal area cropping, to meet the requirements of subsequent analyse. However, obtaining a batch of raw array mouse brain data at a resolution of 0.65×0.65×3μm3<inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="40708_2024_246_Article_IEq1.gif" /> can reach 220TB, and the cropping of the outer contour areas in the disjointed processing still relies on manual visual observation, which consumes substantial computational resources and labor costs. In this paper, we design an efficient deep differential guided filtering module (DDGF) by fusing multi-scale iterative differential guided filtering with deep learning, which effectively refines image details while mitigating background noise. Subsequently, by amalgamating DDGF with deep learning network, we propose a lightweight deep differential guided filtering segmentation network (DDGF-SegNet), which demonstrates robust performance on our dataset, achieving Dice of 0.92, Precision of 0.98, Recall of 0.91, and Jaccard index of 0.86. Building on the segmentation, we utilize connectivity analysis for ascertaining three-dimensional spatial orientation of each brain within the array. Furthermore, we streamline the entire processing workflow by developing an automated pipeline optimized for cluster-based message passing interface(MPI) parallel computation, which reduces the processing time for a mouse brain dataset to a mere 1.1&#xa0;h, enhancing manual efficiency by 25 times and overall data processing efficiency by 2.4 times, paving the way for enhancing the efficiency of big data processing and parsing for high-throughput mesoscopic optical imaging techniques. 
653 |a Parallel processing 
653 |a Imaging techniques 
653 |a Message passing 
653 |a Three dimensional analysis 
653 |a Data processing 
653 |a Deep learning 
653 |a Big Data 
653 |a Visual observation 
653 |a Workflow 
653 |a Efficiency 
653 |a Brain 
653 |a Field of view 
653 |a Stitching 
653 |a Background noise 
653 |a Datasets 
653 |a Neural networks 
653 |a Image segmentation 
653 |a Image filters 
653 |a Pipelining (computers) 
653 |a Arrays 
653 |a Optical data processing 
653 |a Connectivity analysis 
773 0 |t Brain Informatics  |g vol. 11, no. 1 (Dec 2024), p. 32 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3146644339/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3146644339/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch