Two novel deep multi-view support vector machines for multiclass classification

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Applied Intelligence vol. 55, no. 2 (Jan 2025), p. 182
प्रकाशित:
Springer Nature B.V.
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3146696660
003 UK-CbPIL
022 |a 0924-669X 
022 |a 1573-7497 
024 7 |a 10.1007/s10489-024-06126-1  |2 doi 
035 |a 3146696660 
045 2 |b d20250101  |b d20250131 
084 |a 137335  |2 nlm 
245 1 |a Two novel deep multi-view support vector machines for multiclass classification 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Multi-view classification methods have better generalization performance compared to the single-view classification methods due to the consistency information from multiple views. In recent years, the combination of support vector machine (SVM) and multi-view learning has been widely studied. To improve the robustness of multi-view classification methods, emphasis has shifted to the integration of multi-view classification approaches with fully-connected and convolutional neural networks. A classical deep two-view classification method named deep SVM-2K is a combination of support vector machine with two stage kernel canonical correlation analysis (SVM-2K) and deep learning. However, limitations of deep SVM-2K are that it can not cope with multi-view classification and multiclass classification problems. To address these issues, we propose two novel deep multi-view models named deep multi-view support vector machine (DMVSVM) for multiclass classification. DMVSVM uses the learned features by auto-encoder (AE) or deep neural network (DNN) to train the SVM classifier for each view. The two models then impose some constraints to make the output of the multi-view SVM classifiers as consistent as possible, which used to exploring intrinsic relations. Experiments performed on different real-word datasets show the effectiveness of our proposed approaches. 
653 |a Classification 
653 |a Machine learning 
653 |a Deep learning 
653 |a Support vector machines 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Correlation analysis 
773 0 |t Applied Intelligence  |g vol. 55, no. 2 (Jan 2025), p. 182 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3146696660/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3146696660/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch