Embracing the electronic era: the role of digital prescribing solutions in paediatrics

Na minha lista:
Detalhes bibliográficos
Publicado no:Archives of Disease in Childhood vol. 109, no. 12 (Dec 2024), p. 965
Autor principal: Hassan, Hadeel
Publicado em:
BMJ Publishing Group LTD
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3147062023
003 UK-CbPIL
022 |a 0003-9888 
022 |a 1468-2044 
024 7 |a 10.1136/archdischild-2024-326898  |2 doi 
035 |a 3147062023 
045 2 |b d20241201  |b d20241231 
084 |a 270345  |2 nlm 
100 1 |a Hassan, Hadeel  |u Paediatric Haematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada 
245 1 |a Embracing the electronic era: the role of digital prescribing solutions in paediatrics 
260 |b BMJ Publishing Group LTD  |c Dec 2024 
513 |a Editorial 
520 3 |a The research presented in the ‘Smartphone Use for Paediatric Calculations in Emergencies’ (SPaCE) study by Dr Jordan Evans and colleagues sheds light on this issue, suggesting that embracing digital solutions could significantly improve healthcare prescribing safety and efficiency.1 The SPaCE study evaluated emergency calculation methods, including smartphone apps, reference charts and traditional calculations. Furthermore, the integration of generative artificial intelligence and machine learning models into healthcare proposes an exciting frontier for medication error reduction and clinical decision support.6 While studies investigating the use of machine learning have been undertaken, evaluation and validation are required before its widespread implementation as a prediction or clinical decision support tool in EHRs. Scepticism about the initial costs and learning curves associated with digital solutions often overlooks the long-term benefits, such as time and resource savings and the potential to save lives by reducing prescribing errors. 
651 4 |a United Kingdom--UK 
653 |a Artificial intelligence 
653 |a Interoperability 
653 |a Collaboration 
653 |a Smartphones 
653 |a Health care 
653 |a Medical personnel 
653 |a Machine learning 
653 |a Automation 
653 |a Computerized physician order entry 
653 |a Pediatrics 
653 |a Learning algorithms 
653 |a Efficiency 
653 |a Drug dosages 
653 |a Electronic health records 
653 |a Patient safety 
653 |a Clinical decision making 
653 |a Human error 
653 |a Social 
653 |a Calculators 
653 |a Patients 
653 |a Predominantly White Institutions 
653 |a Influence of Technology 
653 |a Records (Forms) 
653 |a Technology Integration 
653 |a Reference Materials 
653 |a Computer Oriented Programs 
653 |a Computer Software 
773 0 |t Archives of Disease in Childhood  |g vol. 109, no. 12 (Dec 2024), p. 965 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147062023/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3147062023/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3147062023/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch