GPU-based Graver Basis Extraction for Nonlinear Integer Optimization

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 18, 2024), p. n/a
Autor principal: Liu, Wenbo
Altres autors: Wang, Akang, Yang, Wenguo
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3147263976
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3147263976 
045 0 |b d20241218 
100 1 |a Liu, Wenbo 
245 1 |a GPU-based Graver Basis Extraction for Nonlinear Integer Optimization 
260 |b Cornell University Library, arXiv.org  |c Dec 18, 2024 
513 |a Working Paper 
520 3 |a Nonlinear integer programs involve optimizing nonlinear objectives with variables restricted to integer values, and have widespread applications in areas such as resource allocation and portfolio selection. One approach to solving these problems is the augmentation procedure, which iteratively refines a feasible solution by identifying augmenting steps from the Graver Basis--a set of test directions. While this method guarantees termination in polynomially many steps, computing the Graver Basis exactly is known to be \(\mathcal{NP}\)-hard. To address this computational challenge, we propose Multi-start Augmentation via Parallel Extraction (MAPLE), a GPU-based heuristic designed to efficiently approximate the Graver Basis. MAPLE extracts test directions by optimizing non-convex continuous problems, leveraging first-order methods to enable parallelizable implementation. The resulting set of directions is then used in multiple augmentations, each seeking to improve the solution's optimality. The proposed approach has three notable characteristics: (i) independence from general-purpose solvers, while ensuring guaranteed feasibility of solutions; (ii) high computational efficiency, achieved through GPU-based parallelization; (iii) flexibility in handling instances with shared constraint matrices but varying objectives and right-hand sides. Empirical evaluations on QPLIB benchmark instances demonstrate that MAPLE delivers performance comparable to state-of-the-art solvers in terms of solution quality, while achieving significant gains in computational efficiency. These results highlight MAPLE's potential as an effective heuristic for solving nonlinear integer programs in practical applications. 
653 |a Heuristic 
653 |a Solvers 
653 |a Feasibility 
653 |a Integer programming 
653 |a Graphics processing units 
653 |a Optimization 
653 |a Resource allocation 
653 |a Computational efficiency 
700 1 |a Wang, Akang 
700 1 |a Yang, Wenguo 
773 0 |t arXiv.org  |g (Dec 18, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147263976/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.13576