Autoregressive Video Generation without Vector Quantization

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 18, 2024), p. n/a
Autor principal: Deng, Haoge
Otros Autores: Pan, Ting, Diao, Haiwen, Luo, Zhengxiong, Cui, Yufeng, Lu, Huchuan, Shan, Shiguang, Qi, Yonggang, Wang, Xinlong
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3147264472
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3147264472 
045 0 |b d20241218 
100 1 |a Deng, Haoge 
245 1 |a Autoregressive Video Generation without Vector Quantization 
260 |b Cornell University Library, arXiv.org  |c Dec 18, 2024 
513 |a Working Paper 
520 3 |a This paper presents a novel approach that enables autoregressive video generation with high efficiency. We propose to reformulate the video generation problem as a non-quantized autoregressive modeling of temporal frame-by-frame prediction and spatial set-by-set prediction. Unlike raster-scan prediction in prior autoregressive models or joint distribution modeling of fixed-length tokens in diffusion models, our approach maintains the causal property of GPT-style models for flexible in-context capabilities, while leveraging bidirectional modeling within individual frames for efficiency. With the proposed approach, we train a novel video autoregressive model without vector quantization, termed NOVA. Our results demonstrate that NOVA surpasses prior autoregressive video models in data efficiency, inference speed, visual fidelity, and video fluency, even with a much smaller model capacity, i.e., 0.6B parameters. NOVA also outperforms state-of-the-art image diffusion models in text-to-image generation tasks, with a significantly lower training cost. Additionally, NOVA generalizes well across extended video durations and enables diverse zero-shot applications in one unified model. Code and models are publicly available at https://github.com/baaivision/NOVA. 
653 |a Diffusion rate 
653 |a Autoregressive models 
653 |a Image processing 
653 |a Modelling 
653 |a Raster scanning 
653 |a Efficiency 
700 1 |a Pan, Ting 
700 1 |a Diao, Haiwen 
700 1 |a Luo, Zhengxiong 
700 1 |a Cui, Yufeng 
700 1 |a Lu, Huchuan 
700 1 |a Shan, Shiguang 
700 1 |a Qi, Yonggang 
700 1 |a Wang, Xinlong 
773 0 |t arXiv.org  |g (Dec 18, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147264472/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.14169