GPgym: A Remote Service Platform with Gaussian Process Regression for Online Learning

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:arXiv.org (Dec 17, 2024), p. n/a
المؤلف الرئيسي: Dai, Xiaobing
مؤلفون آخرون: Yang, Zewen
منشور في:
Cornell University Library, arXiv.org
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full text outside of ProQuest
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3147264961
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3147264961 
045 0 |b d20241217 
100 1 |a Dai, Xiaobing 
245 1 |a GPgym: A Remote Service Platform with Gaussian Process Regression for Online Learning 
260 |b Cornell University Library, arXiv.org  |c Dec 17, 2024 
513 |a Working Paper 
520 3 |a Machine learning is now widely applied across various domains, including industry, engineering, and research. While numerous mature machine learning models have been open-sourced on platforms like GitHub, their deployment often requires writing scripts in specific programming languages, such as Python, C++, or MATLAB. This dependency on particular languages creates a barrier for professionals outside the field of machine learning, making it challenging to integrate these algorithms into their workflows. To address this limitation, we propose GPgym, a remote service node based on Gaussian process regression. GPgym enables experts from diverse fields to seamlessly and flexibly incorporate machine learning techniques into their existing specialized software, without needing to write or manage complex script code. 
653 |a Gaussian process 
653 |a Algorithms 
653 |a Python 
653 |a Machine learning 
653 |a Programming languages 
700 1 |a Yang, Zewen 
773 0 |t arXiv.org  |g (Dec 17, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147264961/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.13276