The Contiguous Art Gallery Problem is Solvable in Polynomial Time

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:arXiv.org (Dec 18, 2024), p. n/a
Kaituhi matua: Magnus Christian Ring Merrild
Ētahi atu kaituhi: Casper Moldrup Rysgaard, Jens Kristian Refsgaard Schou, Svenning, Rolf
I whakaputaina:
Cornell University Library, arXiv.org
Ngā marau:
Urunga tuihono:Citation/Abstract
Full text outside of ProQuest
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3147264975
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3147264975 
045 0 |b d20241218 
100 1 |a Magnus Christian Ring Merrild 
245 1 |a The Contiguous Art Gallery Problem is Solvable in Polynomial Time 
260 |b Cornell University Library, arXiv.org  |c Dec 18, 2024 
513 |a Working Paper 
520 3 |a In this paper, we study the Contiguous Art Gallery Problem, introduced by Thomas C. Shermer at the 2024 Canadian Conference on Computational Geometry, a variant of the classical art gallery problem from 1973 by Victor Klee. In the contiguous variant, the input is a simple polygon \(P\), and the goal is to partition the boundary into a minimum number of polygonal chains such that each chain is visible to a guard. We present a polynomial-time real RAM algorithm, which solves the contiguous art gallery problem. Our algorithm is simple and practical, and we make a C++ implementation available. In contrast, many variations of the art gallery problem are at least NP-hard, making the contiguous variant stand out. These include the edge-covering problem, proven NP-hard by Laurentini [The Visual Computer 1999], and the classical art gallery problem, recently shown \(\exists\mathbb{R}\)-complete by Abrahamsen, Adamaszek, and Miltzow [J. ACM 2022]. Our algorithm is a greedy algorithm that repeatedly traverses the polygon's boundary. To find an optimal solution, we show that it is sufficient to traverse the polygon polynomially many times, resulting in a runtime of \(\mathcal{O}\!\left( n^7 \log n \right)\). Additionally, we provide algorithms for the restricted settings, where either the endpoints of the polygonal chains or the guards must coincide with the vertices of the polygon. 
653 |a Apexes 
653 |a Algorithms 
653 |a Polygons 
653 |a Computational geometry 
653 |a Polynomials 
653 |a Art galleries & museums 
653 |a Greedy algorithms 
653 |a Run time (computers) 
700 1 |a Casper Moldrup Rysgaard 
700 1 |a Jens Kristian Refsgaard Schou 
700 1 |a Svenning, Rolf 
773 0 |t arXiv.org  |g (Dec 18, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147264975/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.13938