CAD-Recode: Reverse Engineering CAD Code from Point Clouds

Na minha lista:
Detalhes bibliográficos
Publicado no:arXiv.org (Dec 18, 2024), p. n/a
Autor principal: Rukhovich, Danila
Outros Autores: Dupont, Elona, Mallis, Dimitrios, Cherenkova, Kseniya, Anis Kacem, Aouada, Djamila
Publicado em:
Cornell University Library, arXiv.org
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3147266091
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3147266091 
045 0 |b d20241218 
100 1 |a Rukhovich, Danila 
245 1 |a CAD-Recode: Reverse Engineering CAD Code from Point Clouds 
260 |b Cornell University Library, arXiv.org  |c Dec 18, 2024 
513 |a Working Paper 
520 3 |a Computer-Aided Design (CAD) models are typically constructed by sequentially drawing parametric sketches and applying CAD operations to obtain a 3D model. The problem of 3D CAD reverse engineering consists of reconstructing the sketch and CAD operation sequences from 3D representations such as point clouds. In this paper, we address this challenge through novel contributions across three levels: CAD sequence representation, network design, and dataset. In particular, we represent CAD sketch-extrude sequences as Python code. The proposed CAD-Recode translates a point cloud into Python code that, when executed, reconstructs the CAD model. Taking advantage of the exposure of pre-trained Large Language Models (LLMs) to Python code, we leverage a relatively small LLM as a decoder for CAD-Recode and combine it with a lightweight point cloud projector. CAD-Recode is trained solely on a proposed synthetic dataset of one million diverse CAD sequences. CAD-Recode significantly outperforms existing methods across three datasets while requiring fewer input points. Notably, it achieves 10 times lower mean Chamfer distance than state-of-the-art methods on DeepCAD and Fusion360 datasets. Furthermore, we show that our CAD Python code output is interpretable by off-the-shelf LLMs, enabling CAD editing and CAD-specific question answering from point clouds. 
653 |a Datasets 
653 |a Drawing 
653 |a Image reconstruction 
653 |a Large language models 
653 |a Reverse engineering 
653 |a Three dimensional models 
653 |a Python 
653 |a Chamfering 
653 |a Computer aided design--CAD 
653 |a Network design 
653 |a Sketches 
653 |a Representations 
653 |a Synthetic data 
700 1 |a Dupont, Elona 
700 1 |a Mallis, Dimitrios 
700 1 |a Cherenkova, Kseniya 
700 1 |a Anis Kacem 
700 1 |a Aouada, Djamila 
773 0 |t arXiv.org  |g (Dec 18, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147266091/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.14042