Automatic cancer nuclei segmentation on histological images: comparison study of deep learning methods

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Biotechnology and Bioprocess Engineering : BBE vol. 29, no. 6 (Dec 2024), p. 1034
प्रकाशित:
Springer Nature B.V.
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3147275964
003 UK-CbPIL
022 |a 1226-8372 
022 |a 1976-3816 
024 7 |a 10.1007/s12257-024-00130-5  |2 doi 
035 |a 3147275964 
045 2 |b d20241201  |b d20241231 
084 |a 108516  |2 nlm 
245 1 |a Automatic cancer nuclei segmentation on histological images: comparison study of deep learning methods 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a Cancer is one of the most common health problems affecting individuals worldwide. In the field of biomedical engineering, one of the main methods for cancer diagnosis is the analysis of histological images of tissue structures and cell nuclei using artificial intelligence. Here, we compared the performance of 15 deep learning methods viz: UNet, Deep-UNet, UNet-CBAM, RA-UNet, SA-Unet and Nuclei-SegNet, UNet-VGG2016, UNet-Resnet-101, TransResUNet, Inception-UNet, Att-UNet++ , FF-UNet, Att-UNet, Res-UNet and a new model, DanNucNet, in pathological nuclei segmentation on tissue slices from different organs on five open datasets: MoNuSeg, CoNSeP, CryoNuSeg, Data Science Bowl, and NuInsSeg. Before training on the data, the pixel intensity and color distribution were analyzed, and different augmentation techniques were applied. The results showed that the UNet-based model with 34.57 million Deep-UNet parameters performed the best, outperforming all models in terms of the Dice coefficient from 3.13 to 22.91%. The implementation of Deep-UNet in this context provides a valuable tool for accurate extraction of cancer cell nuclei from histological images, which in turn will contribute to further developments in cancer pathology and digital histology. 
653 |a Cancer 
653 |a Health problems 
653 |a Digital imaging 
653 |a Artificial intelligence 
653 |a Deep learning 
653 |a Segmentation 
653 |a Cell culture 
653 |a Medical imaging 
653 |a Histology 
653 |a Image processing 
653 |a Data analysis 
653 |a Nuclei 
653 |a Data augmentation 
653 |a Image segmentation 
653 |a Data science 
653 |a Nuclei (cytology) 
653 |a Biomedical engineering 
653 |a Social 
773 0 |t Biotechnology and Bioprocess Engineering : BBE  |g vol. 29, no. 6 (Dec 2024), p. 1034 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147275964/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3147275964/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch