A Traffic Adapative Physics-informed Learning Control for Energy Savings of Connected and Automated Vehicles

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রকাশিত:arXiv.org (Dec 19, 2024), p. n/a
প্রধান লেখক: Shao, Yunli
প্রকাশিত:
Cornell University Library, arXiv.org
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Citation/Abstract
Full text outside of ProQuest
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!

MARC

LEADER 00000nab a2200000uu 4500
001 3147563494
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3147563494 
045 0 |b d20241219 
100 1 |a Shao, Yunli 
245 1 |a A Traffic Adapative Physics-informed Learning Control for Energy Savings of Connected and Automated Vehicles 
260 |b Cornell University Library, arXiv.org  |c Dec 19, 2024 
513 |a Working Paper 
520 3 |a Model predictive control has emerged as an effective approach for real-time optimal control of connected and automated vehicles. However, nonlinear dynamics of vehicle and traffic systems make accurate modeling and real-time optimization challenging. Learning-based control offer a promising alternative, as they adapt to environment without requiring an explicit model. For learning control framework, an augmented state space system design is necessary since optimal control depends on both the ego vehicle's state and predicted states of other vehicles. This work develops a traffic adaptive augmented state space system that allows the control strategy to intelligently adapt to varying traffic conditions. This design ensures that while different vehicle trajectories alter initial conditions, the system dynamics remain independent of specific trajectories. Additionally, a physics-informed learning control framework is presented that combines value function from Bellman's equation with derivative of value functions from Pontryagin's Maximum Principle into a unified loss function. This method aims to reduce required training data and time while enhancing robustness and efficiency. The proposed control framework is applied to car-following scenarios in real-world data calibrated simulation environments. The results show that this learning control approach alleviates real-time computational requirements while achieving car-following behaviors comparable to model-based methods, resulting in 9% energy savings in scenarios not previously seen in training dataset. 
653 |a Robust control 
653 |a Adaptive systems 
653 |a Learning 
653 |a Traffic 
653 |a Initial conditions 
653 |a Time optimal control 
653 |a Bellman theory 
653 |a Optimization 
653 |a Systems design 
653 |a Predictive control 
653 |a System dynamics 
653 |a Nonlinear systems 
653 |a Dynamical systems 
653 |a Automation 
653 |a Nonlinear control 
653 |a Real time 
653 |a Pontryagin principle 
653 |a Nonlinear dynamics 
653 |a Traffic control 
653 |a Driving conditions 
653 |a Vehicles 
653 |a Car following 
773 0 |t arXiv.org  |g (Dec 19, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147563494/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.15079