PhotoHolmes: a Python library for forgery detection in digital images

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 19, 2024), p. n/a
Autor principal: O'Flaherty, Julián
Altres autors: Paganini, Rodrigo, Juan Pablo Sotelo, Umpiérrez, Julieta, Gardella, Marina, Tailanian, Matías, Musé, Pablo
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3147565014
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3147565014 
045 0 |b d20241219 
100 1 |a O'Flaherty, Julián 
245 1 |a PhotoHolmes: a Python library for forgery detection in digital images 
260 |b Cornell University Library, arXiv.org  |c Dec 19, 2024 
513 |a Working Paper 
520 3 |a In this paper, we introduce PhotoHolmes, an open-source Python library designed to easily run and benchmark forgery detection methods on digital images. The library includes implementations of popular and state-of-the-art methods, dataset integration tools, and evaluation metrics. Utilizing the Benchmark tool in PhotoHolmes, users can effortlessly compare various methods. This facilitates an accurate and reproducible comparison between their own methods and those in the existing literature. Furthermore, PhotoHolmes includes a command-line interface (CLI) to easily run the methods implemented in the library on any suspicious image. As such, image forgery methods become more accessible to the community. The library has been built with extensibility and modularity in mind, which makes adding new methods, datasets and metrics to the library a straightforward process. The source code is available at https://github.com/photoholmes/photoholmes. 
653 |a Modularity 
653 |a Digital imaging 
653 |a Datasets 
653 |a Python 
653 |a Source code 
653 |a Line interfaces 
653 |a Benchmarks 
700 1 |a Paganini, Rodrigo 
700 1 |a Juan Pablo Sotelo 
700 1 |a Umpiérrez, Julieta 
700 1 |a Gardella, Marina 
700 1 |a Tailanian, Matías 
700 1 |a Musé, Pablo 
773 0 |t arXiv.org  |g (Dec 19, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147565014/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.14969