Promptable Representation Distribution Learning and Data Augmentation for Gigapixel Histopathology WSI Analysis

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:arXiv.org (Dec 19, 2024), p. n/a
Príomhchruthaitheoir: Tang, Kunming
Rannpháirtithe: Jiang, Zhiguo, Shi, Jun, Wang, Wei, Wu, Haibo, Zheng, Yushan
Foilsithe / Cruthaithe:
Cornell University Library, arXiv.org
Ábhair:
Rochtain ar líne:Citation/Abstract
Full text outside of ProQuest
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 3147565688
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3147565688 
045 0 |b d20241219 
100 1 |a Tang, Kunming 
245 1 |a Promptable Representation Distribution Learning and Data Augmentation for Gigapixel Histopathology WSI Analysis 
260 |b Cornell University Library, arXiv.org  |c Dec 19, 2024 
513 |a Working Paper 
520 3 |a Gigapixel image analysis, particularly for whole slide images (WSIs), often relies on multiple instance learning (MIL). Under the paradigm of MIL, patch image representations are extracted and then fixed during the training of the MIL classifiers for efficiency consideration. However, the invariance of representations makes it difficult to perform data augmentation for WSI-level model training, which significantly limits the performance of the downstream WSI analysis. The current data augmentation methods for gigapixel images either introduce additional computational costs or result in a loss of semantic information, which is hard to meet the requirements for efficiency and stability needed for WSI model training. In this paper, we propose a Promptable Representation Distribution Learning framework (PRDL) for both patch-level representation learning and WSI-level data augmentation. Meanwhile, we explore the use of prompts to guide data augmentation in feature space, which achieves promptable data augmentation for training robust WSI-level models. The experimental results have demonstrated that the proposed method stably outperforms state-of-the-art methods. 
653 |a Data analysis 
653 |a Data augmentation 
653 |a Image analysis 
653 |a Machine learning 
653 |a Representations 
653 |a Stability augmentation 
700 1 |a Jiang, Zhiguo 
700 1 |a Shi, Jun 
700 1 |a Wang, Wei 
700 1 |a Wu, Haibo 
700 1 |a Zheng, Yushan 
773 0 |t arXiv.org  |g (Dec 19, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147565688/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.14473