LLMSA: A Compositional Neuro-Symbolic Approach to Compilation-free and Customizable Static Analysis

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 18, 2024), p. n/a
Autor principal: Wang, Chengpeng
Altres autors: Gao, Yifei, Zhang, Wuqi, Liu, Xuwei, Shi, Qingkai, Zhang, Xiangyu
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3147567323
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3147567323 
045 0 |b d20241218 
100 1 |a Wang, Chengpeng 
245 1 |a LLMSA: A Compositional Neuro-Symbolic Approach to Compilation-free and Customizable Static Analysis 
260 |b Cornell University Library, arXiv.org  |c Dec 18, 2024 
513 |a Working Paper 
520 3 |a Static analysis is essential for program optimization, bug detection, and debugging, but its reliance on compilation and limited customization hampers practical use. Advances in LLMs enable a new paradigm of compilation-free, customizable analysis via prompting. LLMs excel in interpreting program semantics on small code snippets and allow users to define analysis tasks in natural language with few-shot examples. However, misalignment with program semantics can cause hallucinations, especially in sophisticated semantic analysis upon lengthy code snippets. We propose LLMSA, a compositional neuro-symbolic approach for compilation-free, customizable static analysis with reduced hallucinations. Specifically, we propose an analysis policy language to support users decomposing an analysis problem into several sub-problems that target simple syntactic or semantic properties upon smaller code snippets. The problem decomposition enables the LLMs to target more manageable semantic-related sub-problems, while the syntactic ones are resolved by parsing-based analysis without hallucinations. An analysis policy is evaluated with lazy, incremental, and parallel prompting, which mitigates the hallucinations and improves the performance. It is shown that LLMSA achieves comparable and even superior performance to existing techniques in various clients. For instance, it attains 66.27% precision and 78.57% recall in taint vulnerability detection, surpassing an industrial approach in F1 score by 0.20. 
653 |a Performance enhancement 
653 |a Semantics 
653 |a Misalignment 
653 |a Hallucinations 
653 |a Prompt engineering 
653 |a Static code analysis 
653 |a Performance evaluation 
653 |a Large language models 
653 |a Natural language processing 
653 |a Decomposition 
700 1 |a Gao, Yifei 
700 1 |a Zhang, Wuqi 
700 1 |a Liu, Xuwei 
700 1 |a Shi, Qingkai 
700 1 |a Zhang, Xiangyu 
773 0 |t arXiv.org  |g (Dec 18, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147567323/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.14399