dapper: Data Augmentation for Private Posterior Estimation in R

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:arXiv.org (Dec 19, 2024), p. n/a
Egile nagusia: Eng, Kevin
Beste egile batzuk: Awan, Jordan A, Nianqiao, Phyllis Ju, Rao, Vinayak A, Gong, Ruobin
Argitaratua:
Cornell University Library, arXiv.org
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full text outside of ProQuest
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Laburpena:This paper serves as a reference and introduction to using the R package dapper. dapper encodes a sampling framework which allows exact Markov chain Monte Carlo simulation of parameters and latent variables in a statistical model given privatized data. The goal of this package is to fill an urgent need by providing applied researchers with a flexible tool to perform valid Bayesian inference on data protected by differential privacy, allowing them to properly account for the noise introduced for privacy protection in their statistical analysis. dapper offers a significant step forward in providing general-purpose statistical inference tools for privatized data.
ISSN:2331-8422
Baliabidea:Engineering Database