Uncertainty Awareness in Wireless Communications, Sensing, and Learning

Sparad:
Bibliografiska uppgifter
I publikationen:arXiv.org (Dec 18, 2024), p. n/a
Huvudupphov: Wang, Shixiong
Övriga upphov: Dai, Wei, Geoffrey Ye Li
Utgiven:
Cornell University Library, arXiv.org
Ämnen:
Länkar:Citation/Abstract
Full text outside of ProQuest
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3147568270
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3147568270 
045 0 |b d20241218 
100 1 |a Wang, Shixiong 
245 1 |a Uncertainty Awareness in Wireless Communications, Sensing, and Learning 
260 |b Cornell University Library, arXiv.org  |c Dec 18, 2024 
513 |a Working Paper 
520 3 |a Wireless communications and sensing (WCS) establish the backbone of modern information exchange and environment perception. Typical applications range from mobile networks and the Internet of Things to radar and sensor grids. The incorporation of machine learning further expands WCS's boundaries, unlocking automated and high-quality data analytics, together with advisable and efficient decision-making. Despite transformative capabilities, wireless systems often face numerous uncertainties in design and operation, such as modeling errors due to incomplete physical knowledge, statistical errors arising from data scarcity, measurement errors caused by sensor imperfections, computational errors owing to resource limitation, and unpredictability of environmental evolution. Once ignored, these uncertainties can lead to severe outcomes, e.g., performance degradation, system untrustworthiness, inefficient resource utilization, and security vulnerabilities. As such, this article reviews mature and emerging architectural, computational, and operational countermeasures, encompassing uncertainty-aware designs of signals and systems (e.g., diversity, adaptivity, modularity), as well as uncertainty-aware modeling and computational frameworks (e.g., risk-informed optimization, robust signal processing, and trustworthy machine learning). Trade-offs to employ these methods, e.g., robustness vs optimality, are also highlighted. 
653 |a Wireless communications 
653 |a Modularity 
653 |a Wireless networks 
653 |a Machine learning 
653 |a Internet of Things 
653 |a Signal processing 
653 |a Data exchange 
653 |a Optimization 
653 |a Performance degradation 
653 |a Errors 
653 |a Resource utilization 
653 |a Uncertainty 
700 1 |a Dai, Wei 
700 1 |a Geoffrey Ye Li 
773 0 |t arXiv.org  |g (Dec 18, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147568270/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.14369