Leveraging Time Series Categorization and Temporal Fusion Transformers to Improve Cryptocurrency Price Forecasting

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:arXiv.org (Dec 19, 2024), p. n/a
Κύριος συγγραφέας: Peik, Arash
Άλλοι συγγραφείς: Mohammad Ali Zare Chahooki, Amin Milani Fard, Mehdi Agha Sarram
Έκδοση:
Cornell University Library, arXiv.org
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full text outside of ProQuest
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3147568518
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3147568518 
045 0 |b d20241219 
100 1 |a Peik, Arash 
245 1 |a Leveraging Time Series Categorization and Temporal Fusion Transformers to Improve Cryptocurrency Price Forecasting 
260 |b Cornell University Library, arXiv.org  |c Dec 19, 2024 
513 |a Working Paper 
520 3 |a Organizing and managing cryptocurrency portfolios and decision-making on transactions is crucial in this market. Optimal selection of assets is one of the main challenges that requires accurate prediction of the price of cryptocurrencies. In this work, we categorize the financial time series into several similar subseries to increase prediction accuracy by learning each subseries category with similar behavior. For each category of the subseries, we create a deep learning model based on the attention mechanism to predict the next step of each subseries. Due to the limited amount of cryptocurrency data for training models, if the number of categories increases, the amount of training data for each model will decrease, and some complex models will not be trained well due to the large number of parameters. To overcome this challenge, we propose to combine the time series data of other cryptocurrencies to increase the amount of data for each category, hence increasing the accuracy of the models corresponding to each category. 
653 |a Accuracy 
653 |a Digital currencies 
653 |a Transaction processing 
653 |a Deep learning 
653 |a Time series 
700 1 |a Mohammad Ali Zare Chahooki 
700 1 |a Amin Milani Fard 
700 1 |a Mehdi Agha Sarram 
773 0 |t arXiv.org  |g (Dec 19, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147568518/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.14529