Decoding Poultry Vocalizations - Natural Language Processing and Transformer Models for Semantic and Emotional Analysis

Guardat en:
Dades bibliogràfiques
Publicat a:bioRxiv (Dec 20, 2024)
Autor principal: Venkatraman Manikandan
Altres autors: Neethirajan, Suresh
Publicat:
Cold Spring Harbor Laboratory Press
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3147576812
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2024.12.18.629057  |2 doi 
035 |a 3147576812 
045 0 |b d20241220 
100 1 |a Venkatraman Manikandan 
245 1 |a Decoding Poultry Vocalizations - Natural Language Processing and Transformer Models for Semantic and Emotional Analysis 
260 |b Cold Spring Harbor Laboratory Press  |c Dec 20, 2024 
513 |a Working Paper 
520 3 |a Deciphering the acoustic language of chickens offers new opportunities in animal welfare and ecological informatics. Their subtle vocal signals encode health conditions, emotional states, and dynamic interactions within ecosystems. Understanding the semantics of these calls provides a valuable tool for interpreting their functional vocabulary and clarifying how each sound serves a specific purpose in social and environmental contexts. We apply advanced Natural Language Processing and transformer based models to translate bioacoustic data into meaningful insights. Our method integrates Wave2Vec 2.0 for raw audio feature extraction with a fine tuned Bidirectional Encoder Representations from Transformers model, pretrained on a broad corpus of animal sounds and adapted to poultry tasks. This pipeline decodes poultry vocalizations into interpretable categories including distress calls, feeding signals, and mating vocalizations, revealing emotional nuances often overlooked by conventional analyses. Achieving 92 percent accuracy in classifying key vocalization types, our approach demonstrates the feasibility of real time automated monitoring of flock health and stress. By tracking this functional vocabulary, farmers can respond proactively to environmental or behavioral changes, improving poultry welfare, reducing stress related productivity losses, and supporting more sustainable farm management. Beyond agriculture, this research enhances our understanding of computational ecology. Accessing the semantic foundation of animal calls may indicate biodiversity, environmental stressors, and species interactions, informing integrative ecosystem level decision making.Competing Interest StatementThe authors have declared no competing interest. 
653 |a Signal processing 
653 |a Emotions 
653 |a Informatics 
653 |a Semantics 
653 |a Language 
653 |a Animal welfare 
653 |a Agricultural ecosystems 
653 |a Natural language processing 
653 |a Information processing 
653 |a Vocalization behavior 
653 |a Biodiversity 
653 |a Animal models 
653 |a Poultry 
653 |a Farm management 
653 |a Decision making 
700 1 |a Neethirajan, Suresh 
773 0 |t bioRxiv  |g (Dec 20, 2024) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147576812/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2024.12.18.629057v1