Modelling of raindrop size distribution using optimized kernel fuzzy c-means clustering algorithm
Guardado en:
| Udgivet i: | Theoretical and Applied Climatology vol. 156, no. 1 (Jan 2025), p. 47 |
|---|---|
| Udgivet: |
Springer Nature B.V.
|
| Fag: | |
| Online adgang: | Citation/Abstract Full Text - PDF |
| Tags: |
Ingen Tags, Vær først til at tagge denne postø!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3147792724 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 0177-798X | ||
| 022 | |a 1434-4483 | ||
| 022 | |a 0344-7812 | ||
| 022 | |a 0066-6424 | ||
| 022 | |a 0376-1622 | ||
| 024 | 7 | |a 10.1007/s00704-024-05292-z |2 doi | |
| 035 | |a 3147792724 | ||
| 045 | 2 | |b d20250101 |b d20250131 | |
| 084 | |a 65797 |2 nlm | ||
| 245 | 1 | |a Modelling of raindrop size distribution using optimized kernel fuzzy c-means clustering algorithm | |
| 260 | |b Springer Nature B.V. |c Jan 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a The Drop Size Distribution (DSD) has been modelled, and the dataset is being fitted using exponential, gamma, and lognormal distribution approaches. The existing Gaussian Mixture Model (GMM) produces the best results, but it ignores or fails to focus on some data points; thus, there is still potential for improvement in the current models. To address these issues, the Optimized Kernel Fuzzy C Means clustering (KFCM) approach is used to effectively cluster data points and predict the drop size distribution. To assess the performance of the proposed model, the Chi-square test is used with rain data from various seasons and types. The results of the proposed model outperformed 11% on seasonal data, whereas the improvement of 30% to 60% is obtained in the case of rain droplets compared to the previous models. | |
| 653 | |a Datasets | ||
| 653 | |a Drop size | ||
| 653 | |a Drop size distribution | ||
| 653 | |a Raindrops | ||
| 653 | |a Normal distribution | ||
| 653 | |a Measurement techniques | ||
| 653 | |a Size distribution | ||
| 653 | |a Fuzzy sets | ||
| 653 | |a Clustering | ||
| 653 | |a Rain | ||
| 653 | |a Chi-square test | ||
| 653 | |a Climate change | ||
| 653 | |a Data points | ||
| 653 | |a Raindrop size distribution | ||
| 653 | |a Probabilistic models | ||
| 653 | |a Precipitation | ||
| 653 | |a Hydrologic cycle | ||
| 653 | |a Algorithms | ||
| 653 | |a Performance assessment | ||
| 653 | |a Environmental | ||
| 773 | 0 | |t Theoretical and Applied Climatology |g vol. 156, no. 1 (Jan 2025), p. 47 | |
| 786 | 0 | |d ProQuest |t Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3147792724/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3147792724/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |