Modelling of raindrop size distribution using optimized kernel fuzzy c-means clustering algorithm

Guardado en:
Bibliografiske detaljer
Udgivet i:Theoretical and Applied Climatology vol. 156, no. 1 (Jan 2025), p. 47
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3147792724
003 UK-CbPIL
022 |a 0177-798X 
022 |a 1434-4483 
022 |a 0344-7812 
022 |a 0066-6424 
022 |a 0376-1622 
024 7 |a 10.1007/s00704-024-05292-z  |2 doi 
035 |a 3147792724 
045 2 |b d20250101  |b d20250131 
084 |a 65797  |2 nlm 
245 1 |a Modelling of raindrop size distribution using optimized kernel fuzzy c-means clustering algorithm 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a The Drop Size Distribution (DSD) has been modelled, and the dataset is being fitted using exponential, gamma, and lognormal distribution approaches. The existing Gaussian Mixture Model (GMM) produces the best results, but it ignores or fails to focus on some data points; thus, there is still potential for improvement in the current models. To address these issues, the Optimized Kernel Fuzzy C Means clustering (KFCM) approach is used to effectively cluster data points and predict the drop size distribution. To assess the performance of the proposed model, the Chi-square test is used with rain data from various seasons and types. The results of the proposed model outperformed 11% on seasonal data, whereas the improvement of 30% to 60% is obtained in the case of rain droplets compared to the previous models. 
653 |a Datasets 
653 |a Drop size 
653 |a Drop size distribution 
653 |a Raindrops 
653 |a Normal distribution 
653 |a Measurement techniques 
653 |a Size distribution 
653 |a Fuzzy sets 
653 |a Clustering 
653 |a Rain 
653 |a Chi-square test 
653 |a Climate change 
653 |a Data points 
653 |a Raindrop size distribution 
653 |a Probabilistic models 
653 |a Precipitation 
653 |a Hydrologic cycle 
653 |a Algorithms 
653 |a Performance assessment 
653 |a Environmental 
773 0 |t Theoretical and Applied Climatology  |g vol. 156, no. 1 (Jan 2025), p. 47 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147792724/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3147792724/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch