Federated Learning for Coronary Artery Plaque Detection in Atherosclerosis Using IVUS Imaging: A Multi-Hospital Collaboration

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:arXiv.org (Dec 19, 2024), p. n/a
मुख्य लेखक: Chiu-Han, Hsiao
अन्य लेखक: Chen, Kai, Tsung-Yu, Peng, Huang, Wei-Chieh
प्रकाशित:
Cornell University Library, arXiv.org
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full text outside of ProQuest
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3148681740
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148681740 
045 0 |b d20241219 
100 1 |a Chiu-Han, Hsiao 
245 1 |a Federated Learning for Coronary Artery Plaque Detection in Atherosclerosis Using IVUS Imaging: A Multi-Hospital Collaboration 
260 |b Cornell University Library, arXiv.org  |c Dec 19, 2024 
513 |a Working Paper 
520 3 |a The traditional interpretation of Intravascular Ultrasound (IVUS) images during Percutaneous Coronary Intervention (PCI) is time-intensive and inconsistent, relying heavily on physician expertise. Regulatory restrictions and privacy concerns further hinder data integration across hospital systems, complicating collaborative analysis. To address these challenges, a parallel 2D U-Net model with a multi-stage segmentation architecture has been developed, utilizing federated learning to enable secure data analysis across institutions while preserving privacy. The model segments plaques by identifying and subtracting the External Elastic Membrane (EEM) and lumen areas, with preprocessing converting Cartesian to polar coordinates for improved computational efficiency. Achieving a Dice Similarity Coefficient (DSC) of 0.706, the model effectively identifies plaques and detects circular boundaries in real-time. Collaborative efforts with domain experts enhance plaque burden interpretation through precise quantitative measurements. Future advancements may involve integrating advanced federated learning techniques and expanding datasets to further improve performance and applicability. This adaptable technology holds promise for environments handling sensitive, distributed data, offering potential to optimize outcomes in medical imaging and intervention. 
653 |a Polar coordinate models 
653 |a Data analysis 
653 |a Atherosclerosis 
653 |a Collaboration 
653 |a Hospitals 
653 |a Medical imaging 
653 |a Privacy 
653 |a Two dimensional analysis 
653 |a Elastic analysis 
653 |a Data integration 
653 |a Real time 
653 |a Federated learning 
653 |a Time measurement 
700 1 |a Chen, Kai 
700 1 |a Tsung-Yu, Peng 
700 1 |a Huang, Wei-Chieh 
773 0 |t arXiv.org  |g (Dec 19, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148681740/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.15307