A Fusion Approach of Dependency Syntax and Sentiment Polarity for Feature Label Extraction in Commodity Reviews

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Dec 20, 2024), p. n/a
Yazar: Xu, Jianfei
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3148682452
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148682452 
045 0 |b d20241220 
100 1 |a Xu, Jianfei 
245 1 |a A Fusion Approach of Dependency Syntax and Sentiment Polarity for Feature Label Extraction in Commodity Reviews 
260 |b Cornell University Library, arXiv.org  |c Dec 20, 2024 
513 |a Working Paper 
520 3 |a This study analyzes 13,218 product reviews from JD.com, covering four categories: mobile phones, computers, cosmetics, and food. A novel method for feature label extraction is proposed by integrating dependency parsing and sentiment polarity analysis. The proposed method addresses the challenges of low robustness in existing extraction algorithms and significantly enhances extraction accuracy. Experimental results show that the method achieves an accuracy of 0.7, with recall and F-score both stabilizing at 0.8, demonstrating its effectiveness. However, challenges such as dependence on matching dictionaries and the limited scope of extracted feature tags require further investigation in future research. 
653 |a Feature extraction 
653 |a Algorithms 
653 |a Labels 
653 |a Cosmetics 
773 0 |t arXiv.org  |g (Dec 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148682452/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.15610