Short-Term Forecasting of Thermostatic and Residential Loads Using Long Short-Term Memory Recurrent Neural Networks

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Dec 20, 2024), p. n/a
Yazar: Nguyen, Bang
Diğer Yazarlar: Panwar, Mayank, Hovsapian, Rob, Agalgaonkar, Yashodhan
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3148682471
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148682471 
045 0 |b d20241220 
100 1 |a Nguyen, Bang 
245 1 |a Short-Term Forecasting of Thermostatic and Residential Loads Using Long Short-Term Memory Recurrent Neural Networks 
260 |b Cornell University Library, arXiv.org  |c Dec 20, 2024 
513 |a Working Paper 
520 3 |a Internet of Things (IoT) devices in smart grids enable intelligent energy management for grid managers and personalized energy services for consumers. Investigating a smart grid with IoT devices requires a simulation framework with IoT devices modeling. However, there lack comprehensive study on the modeling of IoT devices in smart grids. This paper investigates the IoT device modeling of a thermostatic load and implements the recurrent neural networks model for short-term load forecasting in this IoT-based thermostatic load. The recurrent neural network structure is leveraged to build a load forecasting model on temporal correlation. The temporal recurrent neural network layers including long short-term memory cells are employed to learn the data from both the simulation platform and New South Wales residential datasets. The simulation results are provided for demonstration. 
653 |a Recurrent neural networks 
653 |a Energy management 
653 |a Memory devices 
653 |a Residential energy 
653 |a Electrical loads 
653 |a Internet of Things 
653 |a Smart grid 
653 |a Modelling 
653 |a Forecasting 
700 1 |a Panwar, Mayank 
700 1 |a Hovsapian, Rob 
700 1 |a Agalgaonkar, Yashodhan 
773 0 |t arXiv.org  |g (Dec 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148682471/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.15607