HIGGS: HIerarchy-Guided Graph Stream Summarization

Enregistré dans:
Détails bibliographiques
Publié dans:arXiv.org (Dec 20, 2024), p. n/a
Auteur principal: Zhao, Xuan
Autres auteurs: Xie, Xike, Jensen, Christian S
Publié:
Cornell University Library, arXiv.org
Sujets:
Accès en ligne:Citation/Abstract
Full text outside of ProQuest
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3148683067
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148683067 
045 0 |b d20241220 
100 1 |a Zhao, Xuan 
245 1 |a HIGGS: HIerarchy-Guided Graph Stream Summarization 
260 |b Cornell University Library, arXiv.org  |c Dec 20, 2024 
513 |a Working Paper 
520 3 |a Graph stream summarization refers to the process of processing a continuous stream of edges that form a rapidly evolving graph. The primary challenges in handling graph streams include the impracticality of fully storing the ever-growing datasets and the complexity of supporting graph queries that involve both topological and temporal information. Recent advancements, such as PGSS and Horae, address these limitations by using domain-based, top-down multi-layer structures in the form of compressed matrices. However, they either suffer from poor query accuracy, incur substantial space overheads, or have low query efficiency. This study proposes a novel item-based, bottom-up hierarchical structure, called HIGGS. Unlike existing approaches, HIGGS leverages its hierarchical structure to localize storage and query processing, thereby confining changes and hash conflicts to small and manageable subtrees, yielding notable performance improvements. HIGGS offers tighter theoretical bounds on query accuracy and space cost. Extensive empirical studies on real graph streams demonstrate that, compared to state-of-the-art methods, HIGGS is capable of notable performance enhancements: it can improve accuracy by over 3 orders of magnitude, reduce space overhead by an average of 30%, increase throughput by more than 5 times, and decrease query latency by nearly 2 orders of magnitude. 
653 |a Accuracy 
653 |a Multilayers 
653 |a Storage 
653 |a Graph theory 
653 |a Query processing 
653 |a Creeks & streams 
700 1 |a Xie, Xike 
700 1 |a Jensen, Christian S 
773 0 |t arXiv.org  |g (Dec 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148683067/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.15516