fluke: Federated Learning Utility frameworK for Experimentation and research

Збережено в:
Бібліографічні деталі
Опубліковано в::arXiv.org (Dec 20, 2024), p. n/a
Автор: Polato, Mirko
Опубліковано:
Cornell University Library, arXiv.org
Предмети:
Онлайн доступ:Citation/Abstract
Full text outside of ProQuest
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Опис
Короткий огляд:Since its inception in 2016, Federated Learning (FL) has been gaining tremendous popularity in the machine learning community. Several frameworks have been proposed to facilitate the development of FL algorithms, but researchers often resort to implementing their algorithms from scratch, including all baselines and experiments. This is because existing frameworks are not flexible enough to support their needs or the learning curve to extend them is too steep. In this paper, we present \fluke, a Python package designed to simplify the development of new FL algorithms. fluke is specifically designed for prototyping purposes and is meant for researchers or practitioners focusing on the learning components of a federated system. fluke is open-source, and it can be either used out of the box or extended with new algorithms with minimal overhead.
ISSN:2331-8422
Джерело:Engineering Database