Conformal approach to physics simulations for thin curved 3D membranes

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 20, 2024), p. n/a
Autor principal: Bogush, Igor
Altres autors: Fomin, Vladimir M, Dobrovolskiy, Oleksandr V
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3148683287
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148683287 
045 0 |b d20241220 
100 1 |a Bogush, Igor 
245 1 |a Conformal approach to physics simulations for thin curved 3D membranes 
260 |b Cornell University Library, arXiv.org  |c Dec 20, 2024 
513 |a Working Paper 
520 3 |a Three-dimensional nanoarchitectures are widely used across various areas of physics, including spintronics, photonics, and superconductivity. In this regard, thin curved 3D membranes are especially interesting for applications in nano- and optoelectronics, sensorics, and information processing, making physics simulations in complex 3D geometries indispensable for unveiling new physical phenomena and the development of devices. Here, we present a general-purpose approach to physics simulations for thin curved 3D membranes, that allows for performing simulations using finite difference methods instead of meshless methods or methods with irregular meshes. The approach utilizes a numerical conformal mapping of the initial surface to a flat domain and is based on the uniformization theorem stating that any simply-connected Riemann surface is conformally equivalent to an open unit disk, a complex plane, or a Riemann sphere. We reveal that for many physical problems involving the Laplace operator and divergence, a flat-domain formulation of the initial problem only requires a modification of the equations of motion and the boundary conditions by including a conformal factor and the mean/Gaussian curvatures. We demonstrate the method's capabilities for case studies of the Schr\"{o}dinger equation for a charged particle in static electric and magnetic fields for 3D geometries, including C-shaped and ring-shaped structures, as well as for the time-dependent Ginzburg-Landau equation. 
653 |a Conformal mapping 
653 |a Finite element method 
653 |a Simulation 
653 |a Divergence 
653 |a Physics 
653 |a Data processing 
653 |a Spintronics 
653 |a Equations of motion 
653 |a Meshless methods 
653 |a Charged particles 
653 |a Optoelectronics 
653 |a Landau-Ginzburg equations 
653 |a Finite difference method 
653 |a Riemann manifold 
653 |a Boundary conditions 
653 |a Laplace transforms 
653 |a Magnetic domains 
653 |a Membranes 
653 |a Riemann surfaces 
653 |a Superconductivity 
700 1 |a Fomin, Vladimir M 
700 1 |a Dobrovolskiy, Oleksandr V 
773 0 |t arXiv.org  |g (Dec 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148683287/abstract/embedded/ITVB7CEANHELVZIZ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.15741